Java tutorial
/* * Licensed to Metamarkets Group Inc. (Metamarkets) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. Metamarkets licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package io.druid.benchmark.datagen; import org.apache.commons.math3.distribution.EnumeratedDistribution; import org.apache.commons.math3.util.Pair; import java.util.List; import java.util.TreeMap; /* * EnumeratedDistrubtion's sample() method does a linear scan through the array of probabilities. * * This is too slow with high cardinality value sets, so this subclass overrides sample() to use * a TreeMap instead. */ public class EnumeratedTreeDistribution<T> extends EnumeratedDistribution { private TreeMap<Double, Integer> probabilityRanges; private List<Pair<T, Double>> normalizedPmf; public EnumeratedTreeDistribution(final List<Pair<T, Double>> pmf) { super(pmf); // build the interval tree probabilityRanges = new TreeMap<Double, Integer>(); normalizedPmf = this.getPmf(); double cumulativep = 0.0; for (int i = 0; i < normalizedPmf.size(); i++) { probabilityRanges.put(cumulativep, i); Pair<T, Double> pair = normalizedPmf.get(i); cumulativep += pair.getSecond(); } } @Override public T sample() { final double randomValue = random.nextDouble(); Integer valueIndex = probabilityRanges.floorEntry(randomValue).getValue(); return normalizedPmf.get(valueIndex).getFirst(); } }