Java tutorial
/* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ package iad.stat.distribution; import iad.stat.DispersionStats; import iad.stat.MeanStats; import java.util.List; import org.apache.commons.math3.distribution.NormalDistribution; import org.apache.commons.math3.distribution.TDistribution; /** * * @author marr */ public class DistributionCalc { NormalDistribution norm; TDistribution tstud; private double degreesOfFredom; private double mean1; private double mean2; private double variance1; private double variance2; private double zScore; private int n1; private int n2; private double normalPValue; private double studentPValue; public DistributionCalc(List<Double> data1, List<Double> data2, boolean isTwoTailed) { calculateMV(data1, data2); calculateDF(); calculateZScore(); calculateNorm(isTwoTailed); calculateStudent(isTwoTailed); } private void calculateDF() { this.degreesOfFredom = ((variance1 / n1) + (variance2 / n2)) * ((variance1 / n1) + (variance2 / n2)); this.degreesOfFredom /= ((variance1 / n1) * (variance1 / n1) / (n1 - 1)) + ((variance2 / n2) * (variance2 / n2) / (n2 - 1)); } private void calculateZScore() { zScore = (mean1 - mean2) / Math.sqrt((variance1 / n1) + (variance2 / n2)); } private void calculateMV(List<Double> data1, List<Double> data2) { this.mean1 = MeanStats.getArithmeticMean(data1); this.mean2 = MeanStats.getArithmeticMean(data2); this.variance1 = DispersionStats.getVariance(data1); this.variance2 = DispersionStats.getVariance(data2); this.n1 = data1.size(); this.n2 = data2.size(); } private void calculateNorm(boolean twoTailed) { norm = new NormalDistribution(); if (twoTailed) { normalPValue = (1 - norm.cumulativeProbability(Math.abs(zScore))) * 2; } else { normalPValue = 1 - norm.cumulativeProbability(Math.abs(zScore)); } } private void calculateStudent(boolean twoTailed) { tstud = new TDistribution(degreesOfFredom); if (twoTailed) { studentPValue = (1 - tstud.cumulativeProbability(Math.abs(zScore))) * 2; } else { studentPValue = 1 - tstud.cumulativeProbability(Math.abs(zScore)); } } public double getDegreesOfFredom() { return degreesOfFredom; } public double getZScore() { return zScore; } public Double getMean1() { return mean1; } public double getMean2() { return mean2; } public double getVariance1() { return variance1; } public double getVariance2() { return variance2; } public int getN1() { return n1; } public int getN2() { return n2; } public double getNormalPValue() { return normalPValue; } public double getStudentPValue() { return studentPValue; } }