Java tutorial
/* * Hivemall: Hive scalable Machine Learning Library * * Copyright (C) 2015 Makoto YUI * Copyright (C) 2013-2015 National Institute of Advanced Industrial Science and Technology (AIST) * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package hivemall.common; import hivemall.utils.lang.NumberUtils; import hivemall.utils.lang.Primitives; import javax.annotation.Nonnegative; import javax.annotation.Nonnull; import javax.annotation.Nullable; import org.apache.commons.cli.CommandLine; import org.apache.hadoop.hive.ql.exec.UDFArgumentException; public abstract class EtaEstimator { protected final float eta0; public EtaEstimator(float eta0) { this.eta0 = eta0; } public float eta0() { return eta0; } public abstract float eta(long t); public void update(@Nonnegative float multipler) { } public static final class FixedEtaEstimator extends EtaEstimator { public FixedEtaEstimator(float eta) { super(eta); } @Override public float eta(long t) { return eta0; } } public static final class SimpleEtaEstimator extends EtaEstimator { private final float finalEta; private final double total_steps; public SimpleEtaEstimator(float eta0, long total_steps) { super(eta0); this.finalEta = (float) (eta0 / 2.d); this.total_steps = total_steps; } @Override public float eta(final long t) { if (t > total_steps) { return finalEta; } return (float) (eta0 / (1.d + (t / total_steps))); } } public static final class InvscalingEtaEstimator extends EtaEstimator { private final double power_t; public InvscalingEtaEstimator(float eta0, double power_t) { super(eta0); this.power_t = power_t; } @Override public float eta(final long t) { return (float) (eta0 / Math.pow(t, power_t)); } } /** * bold driver: Gemulla et al., Large-scale matrix factorization with distributed stochastic * gradient descent, KDD 2011. */ public static final class AdjustingEtaEstimator extends EtaEstimator { private float eta; public AdjustingEtaEstimator(float eta) { super(eta); this.eta = eta; } @Override public float eta(long t) { return eta; } @Override public void update(@Nonnegative float multipler) { float newEta = eta * multipler; if (!NumberUtils.isFinite(newEta)) { // avoid NaN or INFINITY return; } this.eta = Math.min(eta0, newEta); // never be larger than eta0 } } @Nonnull public static EtaEstimator get(@Nullable CommandLine cl) throws UDFArgumentException { return get(cl, 0.1f); } @Nonnull public static EtaEstimator get(@Nullable CommandLine cl, float defaultEta0) throws UDFArgumentException { if (cl == null) { return new InvscalingEtaEstimator(defaultEta0, 0.1d); } if (cl.hasOption("boldDriver")) { float eta = Primitives.parseFloat(cl.getOptionValue("eta"), 0.3f); return new AdjustingEtaEstimator(eta); } String etaValue = cl.getOptionValue("eta"); if (etaValue != null) { float eta = Float.parseFloat(etaValue); return new FixedEtaEstimator(eta); } float eta0 = Primitives.parseFloat(cl.getOptionValue("eta0"), defaultEta0); if (cl.hasOption("t")) { long t = Long.parseLong(cl.getOptionValue("t")); return new SimpleEtaEstimator(eta0, t); } double power_t = Primitives.parseDouble(cl.getOptionValue("power_t"), 0.1d); return new InvscalingEtaEstimator(eta0, power_t); } }