geogebra.common.kernel.optimization.FitRealFunction.java Source code

Java tutorial

Introduction

Here is the source code for geogebra.common.kernel.optimization.FitRealFunction.java

Source

package geogebra.common.kernel.optimization;

/* 
 GeoGebra - Dynamic Mathematics for Everyone
 http://www.geogebra.org
    
 This file is part of GeoGebra.
    
 This program is free software; you can redistribute it and/or modify it 
 under the terms of the GNU General Public License as published by 
 the Free Software Foundation.
    
 */

import geogebra.common.kernel.Kernel;
import geogebra.common.kernel.StringTemplate;
import geogebra.common.kernel.arithmetic.ExpressionNode;
import geogebra.common.kernel.arithmetic.ExpressionValue;
import geogebra.common.kernel.arithmetic.Function;
import geogebra.common.kernel.arithmetic.FunctionVariable;
import geogebra.common.kernel.arithmetic.MyDouble;
import geogebra.common.kernel.arithmetic.NumberValue;
import geogebra.common.kernel.geos.GeoElement;

/**
 * <h3>FitRealFunction</h3>
 * 
 * <pre>
 *   Class with FitRealFunction which will be used when Fit[<list>,<function>] does
 *   nonlinear curve-fitting on a copy of <function> where gliders a,b,c,...
 *   are used as parameters.
 *   
 *   Implements:
 * 
 *         org.apache.commons.math.optimization.fitting.ParametricRealFunction
 *         which can be given to org.apache....fitting.CurveFitter which
 *         does the rest of the job.
 *   
 *   Interface:
 *   
 *      FitRealFunction(Function)            Makes a copy of Function with gliders replaced by mydouble parameters
 *      value(double,double[])               Evaluates for x and pars[]
 *      gradient(double,double[])            Evaluates a gradient for x and pars[] numerically
 *   
 *   For AlgoFitNL:
 *   
 *      getNumberOfParameters()               Get number of gliders/parameters found and changed
 *      getStartParameters()               Get array of startvalues for parameters.
 *     getGeoFunction(double[])            Get FitFunction as GeoFunction with parameters replaced
 *   
 *   For later extensions and external use:
 *   
 *      evaluate(double,double[])            As value(...), perhaps implementing other interfaces later?
 *      evaluate(double)                  As an ordinary function
 *      evaluate()                        Last value
 *      getFunction(double[])               Get as Function with parameters replaced
 *      
 *      ToDo:      The gradient could be more sophisticated, but the Apache lib is quite robust :-)
 *               Some tuning of numerical precision both here and in the setup of LM-optimizer
 *               
 *               Should probably make an abstract, and make this a subclass,
 *               will do if the need arises.
 * </pre>
 * 
 * @author Hans-Petter Ulven
 * @version 15.03.2011
 */
public class FitRealFunction implements org.apache.commons.math.optimization.fitting.ParametricRealFunction {

    // / --- Properties --- ///
    private Kernel kernel = null;
    private int numberOfParameters = 0;
    private Object[] gliders = null; // Pointers to gliders, need for new
    // startvalues
    private Function newf = null;
    private double lastvalue = 0.0d;
    private MyDouble[] mydoubles = null;
    public boolean parametersOK = true;

    // / --- Interface --- ///

    /** Probably not needed? */
    public FitRealFunction() {
    }// Constructor

    /**
     * Main constructor
     * 
     * @param f
     *            Function to be copied and manipulated
     */
    public FitRealFunction(Function f) {
        super();
        setFunction(f);
    }// Constructor

    /**
     * Implementing org.apache...fitting.ParametricRealFunction
     * 
     * @param x
     *            double variable
     * @param pars
     *            double[] parameters
     * @return functionvalue
     */
    public final double value(double x, double[] pars) {
        for (int i = 0; i < numberOfParameters; i++) {
            mydoubles[i].set(pars[i]);
            // mydoubles[i].setLabel("p_{"+i+"}");
        } // for all parameter
        lastvalue = newf.evaluate(x);
        return lastvalue;
    }// evaluate(x,pars[])

    /**
     * Implementing org.apache...fitting.ParametricRealFunction
     * 
     * @param x
     *            double variable
     * @param pars
     *            double[] parameters
     */
    public final double[] gradient(double x, double[] pars) {
        double oldf, newf;
        double deltap = 1.0E-5;// 1E-10 and 1E-15 is far too small, keep E-5
        // until search algo is made
        double[] gradient = new double[numberOfParameters];
        for (int i = 0; i < numberOfParameters; i++) {
            oldf = value(x, pars);
            pars[i] += deltap;
            newf = value(x, pars);
            gradient[i] = (newf - oldf) / deltap;
            pars[i] -= deltap;
        } // for all parameters
        return gradient;
    }// gradient(x,pars)

    public void setFunction(Function f) {
        kernel = f.getKernel();
        FunctionVariable fvar = f.getFunctionVariable();

        java.util.HashSet<GeoElement> hash = f.getVariables(); // Get a,b,c,...
        // to array
        if (hash == null) {
            //throw (new Exception("No gliders/parameters in fit-function..."));
            this.parametersOK = false;
        } else {
            gliders = hash.toArray();
        } // if no gliders

        numberOfParameters = gliders.length;

        mydoubles = new MyDouble[numberOfParameters]; // Make my own parameters
        double temp;
        for (int i = 0; i < numberOfParameters; i++) {
            temp = ((NumberValue) gliders[i]).getDouble();
            mydoubles[i] = new MyDouble(kernel);
            mydoubles[i].set(temp); // Set mydoubles to start values from a,b,c
        } // for all parameters

        ExpressionNode node = f.getExpression();

        ExpressionNode enf = (ExpressionNode) node.deepCopy(kernel); // Make new
        // tree
        // for
        // new
        // function
        // ExpressionNode enf=new ExpressionNode(kernel,evf);
        // //System.out.println("enf(fr replace): "+enf.toString());

        for (int i = 0; i < numberOfParameters; i++) {
            enf = enf.replace((ExpressionValue) gliders[i], mydoubles[i].evaluate(StringTemplate.defaultTemplate))
                    .wrap();
            // System.out.println("Replaced: "+((NumberValue)pars[i]).toString()+"with: "+mydoubles[i].toString());
        } // for all parameters
          // System.out.println("enf(etter replace): "+enf.toString());
        enf.resolveVariables();
        // should we dispose this??? if(this.newf!=null)
        this.newf = new Function(enf, fvar); // System.out.println("new function: "+newf.toString());

    }// setFunction(Function)

    public final int getNumberOfParameters() {
        return numberOfParameters;
    } // Needed by AlgoFitNL

    public final double[] getStartValues() {
        double[] startvalues = new double[numberOfParameters];
        for (int i = 0; i < numberOfParameters; i++) {
            startvalues[i] = ((NumberValue) gliders[i]).getDouble(); // Only
            // first
            // time:
            // mydoubles[i].getDouble();
        } // for all parameters
        return startvalues;
    }// getStartValues()

    /** For other uses later? */
    public final double evaluate(double x, double[] pars) {
        return value(x, pars);
    }

    public final double evaluate() {
        return lastvalue;
    }

    public final double evaluate(double x) {
        return newf.evaluate(x);
    }// evaluate(x);

    public final Function getFunction() {
        return newf;
    }

    public MyDouble[] getCoeffs() {
        return mydoubles;
    }

    // --- SNIP --- ///

}// Class FitRealFunction