Java tutorial
/** * * Copyright 2017 Florian Erhard * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ package gedi.util.math.stat.testing; import java.util.Arrays; import gedi.util.ArrayUtils; import org.apache.commons.math3.distribution.NormalDistribution; import org.apache.commons.math3.stat.ranking.NaNStrategy; import org.apache.commons.math3.stat.ranking.NaturalRanking; import org.apache.commons.math3.stat.ranking.TiesStrategy; public class WilcoxonUnpaired { /** Ranking algorithm. */ private NaturalRanking naturalRanking; /** * Create a test instance where NaN's are left in place and ties get * the average of applicable ranks. Use this unless you are very sure * of what you are doing. */ public WilcoxonUnpaired() { naturalRanking = new NaturalRanking(NaNStrategy.FIXED, TiesStrategy.AVERAGE); } /** * Create a test instance using the given strategies for NaN's and ties. * Only use this if you are sure of what you are doing. * * @param nanStrategy * specifies the strategy that should be used for Double.NaN's * @param tiesStrategy * specifies the strategy that should be used for ties */ public WilcoxonUnpaired(final NaNStrategy nanStrategy, final TiesStrategy tiesStrategy) { naturalRanking = new NaturalRanking(nanStrategy, tiesStrategy); } private double xsum(double[] r, int nx) { double re = 0; for (int i = 0; i < nx; i++) re += r[i]; return re; } private NormalDistribution norm = new NormalDistribution(); public double computePval(double[] x, double[] y) { return computePval(H1.NOT_EQUAL, x, y); } public double computePval(H1 h1, double[] x, double[] y) { double[] conc = ArrayUtils.concat(x, y); double[] r = naturalRanking.rank(conc); double[] rsort = r.clone(); Arrays.sort(rsort); int nx = x.length; int ny = y.length; double w = xsum(r, nx) - nx * (nx + 1) / 2; double tiesSum = 0; int s = 0; for (int i = 1; i < rsort.length; i++) { if (Double.compare(rsort[s], rsort[i]) < 0) { double d = i - s; if (d > 1) tiesSum += d * d * d - d; s = i; } } int d = r.length - s; if (d > 1) tiesSum += d * d * d * -d; double z = w - nx * ny / 2; double SIGMA = Math.sqrt((nx * ny / 12) * ((nx + ny + 1) - tiesSum / ((nx + ny) * (nx + ny - 1)))); double CORRECTION = Math.signum(z) * 0.5; if (h1 == H1.GREATER_THAN) CORRECTION = 0.5; else if (h1 == H1.LESS_THAN) CORRECTION = 0.5; z = (z - CORRECTION) / SIGMA; double PVAL = norm.cumulativeProbability(z); if (h1 == H1.GREATER_THAN) PVAL = 1 - PVAL; else if (h1 == H1.NOT_EQUAL) PVAL = 2 * Math.min(PVAL, 1 - PVAL); return PVAL; } }