gedi.util.datastructure.array.functions.NumericArrayFunction.java Source code

Java tutorial

Introduction

Here is the source code for gedi.util.datastructure.array.functions.NumericArrayFunction.java

Source

/**
 * 
 *    Copyright 2017 Florian Erhard
 *
 *   Licensed under the Apache License, Version 2.0 (the "License");
 *   you may not use this file except in compliance with the License.
 *   You may obtain a copy of the License at
 *
 *       http://www.apache.org/licenses/LICENSE-2.0
 *
 *   Unless required by applicable law or agreed to in writing, software
 *   distributed under the License is distributed on an "AS IS" BASIS,
 *   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *   See the License for the specific language governing permissions and
 *   limitations under the License.
 * 
 */
package gedi.util.datastructure.array.functions;

import gedi.util.ArrayUtils;
import gedi.util.datastructure.array.NumericArray;
import gedi.util.datastructure.array.NumericArray.NumericArrayType;
import gedi.util.datastructure.collections.doublecollections.DoubleArrayList;

import java.util.Arrays;
import java.util.function.DoublePredicate;
import java.util.function.ToDoubleFunction;

import org.apache.commons.math3.stat.descriptive.moment.GeometricMean;
import org.apache.commons.math3.stat.descriptive.moment.Kurtosis;
import org.apache.commons.math3.stat.descriptive.moment.Mean;
import org.apache.commons.math3.stat.descriptive.moment.Skewness;
import org.apache.commons.math3.stat.descriptive.moment.StandardDeviation;
import org.apache.commons.math3.stat.descriptive.moment.Variance;
import org.apache.commons.math3.stat.descriptive.rank.Max;
import org.apache.commons.math3.stat.descriptive.rank.Min;
import org.apache.commons.math3.stat.descriptive.rank.Percentile;
import org.apache.commons.math3.stat.descriptive.summary.Product;
import org.apache.commons.math3.stat.descriptive.summary.Sum;
import org.apache.commons.math3.stat.descriptive.summary.SumOfLogs;
import org.apache.commons.math3.stat.descriptive.summary.SumOfSquares;

@FunctionalInterface
public interface NumericArrayFunction extends ToDoubleFunction<NumericArray> {

    public static final NumericArrayFunction GeometricMean = new StorelessUnivariateStatisticAdapter(
            new GeometricMean());
    public static final NumericArrayFunction Kurtosis = new StorelessUnivariateStatisticAdapter(new Kurtosis());
    public static final NumericArrayFunction Max = new StorelessUnivariateStatisticAdapter(new Max());
    public static final NumericArrayFunction Mean = new StorelessUnivariateStatisticAdapter(new Mean());
    public static final NumericArrayFunction Min = new StorelessUnivariateStatisticAdapter(new Min());
    public static final NumericArrayFunction Product = new StorelessUnivariateStatisticAdapter(new Product());
    public static final NumericArrayFunction Skewness = new StorelessUnivariateStatisticAdapter(new Skewness());
    public static final NumericArrayFunction StandardDeviation = new StorelessUnivariateStatisticAdapter(
            new StandardDeviation());
    public static final NumericArrayFunction Sum = new StorelessUnivariateStatisticAdapter(new Sum());
    public static final NumericArrayFunction SumOfLogs = new StorelessUnivariateStatisticAdapter(new SumOfLogs());
    public static final NumericArrayFunction SumOfSquares = new StorelessUnivariateStatisticAdapter(
            new SumOfSquares());
    public static final NumericArrayFunction Variance = new StorelessUnivariateStatisticAdapter(new Variance());

    public static final NumericArrayFunction LowerQuartile = new UnivariateStatisticAdapter(new Percentile(25));
    public static final NumericArrayFunction Median = new UnivariateStatisticAdapter(new Percentile(50));
    public static final NumericArrayFunction UpperQuartile = new UnivariateStatisticAdapter(new Percentile(75));

    public static final NumericArrayFunction SinhMean = n -> {
        double re = 0;
        for (int i = 0; i < n.length(); i++) {
            double c = n.getDouble(i);
            double asinh = Math.log(c + Math.sqrt(c * c + 1));
            re += asinh;
        }
        return Math.sinh(re / n.length());
    };

    public static final NumericArrayFunction SaveMax = n -> {
        double re = Double.NEGATIVE_INFINITY;
        for (int i = 0; i < n.length(); i++) {
            double c = n.getDouble(i);
            if (!Double.isInfinite(c) && !Double.isNaN(c))
                re = Math.max(re, c);
        }
        return Double.isInfinite(re) ? Double.NaN : re;
    };

    public static final NumericArrayFunction SaveSum = n -> {
        double re = 0;
        for (int i = 0; i < n.length(); i++) {
            double c = n.getDouble(i);
            if (!Double.isInfinite(c) && !Double.isNaN(c))
                re = re + c;
        }
        return re;
    };

    public static final NumericArrayFunction GeometricMeanRemoveNonPositive = n -> {
        DoubleArrayList r = new DoubleArrayList();
        for (int i = 0; i < n.length(); i++) {
            double c = n.getDouble(i);
            if (c > 0)
                r.add(c);
        }
        if (r.isEmpty())
            return 0;
        return new GeometricMean().evaluate(r.toDoubleArray());
    };

    public static final NumericArrayFunction SaveMin = n -> {
        double re = Double.POSITIVE_INFINITY;
        for (int i = 0; i < n.length(); i++) {
            double c = n.getDouble(i);
            if (!Double.isInfinite(c) && !Double.isNaN(c))
                re = Math.min(re, c);
        }
        return Double.isInfinite(re) ? Double.NaN : re;
    };

    public static final NumericArrayFunction Mad = n -> {
        double med = Median.applyAsDouble(n);
        NumericArray a = NumericArray.createMemory(n.length(), NumericArrayType.Double);
        for (int i = 0; i < n.length(); i++) {
            double c = n.getDouble(i);
            a.setDouble(i, Math.abs(c - med));
        }
        return Median.applyAsDouble(a);
    };

    public static final NumericArrayFunction Count = n -> {
        return n.length();
    };

    public static final NumericArrayFunction Entropy = n -> {
        double re = 0;
        double s = Sum.applyAsDouble(n);
        for (int i = 0; i < n.length(); i++) {
            double v = n.getDouble(i);
            re += v == 0 ? 0 : (v / s * Math.log(v / s) / Math.log(2));
        }
        return -re;
    };

    public static NumericArrayFunction fraction(final DoublePredicate predicate) {
        return new NumericArrayFunction() {

            @Override
            public double applyAsDouble(NumericArray value) {
                int re = 0;
                for (int i = 0; i < value.length(); i++)
                    if (predicate.test(value.getDouble(i)))
                        re++;
                return (double) re / value.length();
            }
        };
    }

    public static NumericArrayFunction count(final DoublePredicate predicate) {
        return new NumericArrayFunction() {

            @Override
            public double applyAsDouble(NumericArray value) {
                int re = 0;
                for (int i = 0; i < value.length(); i++)
                    if (predicate.test(value.getDouble(i)))
                        re++;
                return re;
            }
        };
    }

    public static NumericArrayFunction quantile(double q) {
        return new UnivariateStatisticAdapter(new Percentile(q * 100));
    }

    public static NumericArrayFunction orderStatistics(int rank) {
        return new NumericArrayFunction() {

            @Override
            public double applyAsDouble(NumericArray value) {
                return ArrayUtils.orderStatistic(value.toDoubleArray(), rank);
            }

        };
    }

    public static NumericArrayFunction trimmedMean(double trimQuantile) {
        return new NumericArrayFunction() {
            @Override
            public double applyAsDouble(NumericArray value) {
                double[] a = value.toDoubleArray();
                Arrays.sort(a);
                int trim = (int) (a.length * trimQuantile);
                return ArrayUtils.sum(a, trim, a.length - trim) / (a.length - trim - trim);
            }

        };
    }

}