gdsc.core.utils.DoubleEquality.java Source code

Java tutorial

Introduction

Here is the source code for gdsc.core.utils.DoubleEquality.java

Source

package gdsc.core.utils;

import org.apache.commons.math3.util.FastMath;

/*----------------------------------------------------------------------------- 
 * GDSC SMLM Software
 * 
 * Copyright (C) 2013 Alex Herbert
 * Genome Damage and Stability Centre
 * University of Sussex, UK
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *---------------------------------------------------------------------------*/

/**
 * Provides equality functions for double doubleing polong numbers
 * <p>
 * Adapted from http://www.cygnus-software.com/papers/comparingdoubles/comparingdoubles.htm
 */
public class DoubleEquality {
    private static final double RELATIVE_ERROR = 1e-2f;
    private static final double ABSOLUTE_ERROR = 1e-10f;
    private static final long SIGNIFICANT_DIGITS = 3;

    private double maxRelativeError;
    private double maxAbsoluteError;
    private long maxUlps;

    /**
     * Default constructor
     */
    public DoubleEquality() {
        init(RELATIVE_ERROR, ABSOLUTE_ERROR, SIGNIFICANT_DIGITS);
    }

    /**
     * Override constructor
     * 
     * @param maxRelativeError
     * @param maxAbsoluteError
     */
    public DoubleEquality(double maxRelativeError, double maxAbsoluteError) {
        init(maxRelativeError, maxAbsoluteError, SIGNIFICANT_DIGITS);
    }

    /**
     * Override constructor
     * 
     * @param maxRelativeError
     * @param maxAbsoluteError
     * @param significantDigits
     */
    public DoubleEquality(double maxRelativeError, double maxAbsoluteError, long significantDigits) {
        init(maxRelativeError, maxAbsoluteError, significantDigits);
    }

    /**
     * Override constructor
     * 
     * @param significantDigits
     * @param maxAbsoluteError
     */
    public DoubleEquality(long significantDigits, double maxAbsoluteError) {
        init(RELATIVE_ERROR, maxAbsoluteError, significantDigits);
    }

    private void init(double maxRelativeError, double maxAbsoluteError, long significantDigits) {
        this.maxRelativeError = maxRelativeError;
        this.maxAbsoluteError = maxAbsoluteError;
        setSignificantDigits(significantDigits);
    }

    /**
     * Compares two doubles are within the configured errors.
     * 
     * @param A
     * @param B
     * @return True if equal
     */
    public boolean almostEqualRelativeOrAbsolute(double A, double B) {
        return almostEqualRelativeOrAbsolute(A, B, maxRelativeError, maxAbsoluteError);
    }

    /**
     * Compares two doubles are within the configured number of bits variation using long comparisons.
     * 
     * @param A
     * @param B
     * @return True if equal
     */
    public boolean almostEqualComplement(double A, double B) {
        return almostEqualComplement(A, B, maxUlps, maxAbsoluteError);
    }

    /**
     * Compares two doubles within the configured number of bits variation using long comparisons.
     * 
     * @param A
     * @param B
     * @return -1, 0 or 1
     */
    public long compareComplement(double A, double B) {
        return compareComplement(A, B, maxUlps);
    }

    /**
     * Compares two double arrays are within the configured errors.
     * 
     * @param A
     * @param B
     * @return True if equal
     */
    public boolean almostEqualRelativeOrAbsolute(double[] A, double[] B) {
        for (int i = 0; i < A.length; i++)
            if (!almostEqualRelativeOrAbsolute(A[i], B[i], maxRelativeError, maxAbsoluteError))
                return false;
        return true;
    }

    /**
     * Compares two double arrays are within the configured number of bits variation using long comparisons.
     * 
     * @param A
     * @param B
     * @return True if equal
     */
    public boolean almostEqualComplement(double[] A, double[] B) {
        for (int i = 0; i < A.length; i++)
            if (!almostEqualComplement(A[i], B[i], maxUlps, maxAbsoluteError))
                return false;
        return true;
    }

    /**
     * Compares two doubles are within the specified errors.
     * 
     * @param A
     * @param B
     * @param maxRelativeError
     *            The relative error allowed between the numbers
     * @param maxAbsoluteError
     *            The absolute error allowed between the numbers. Should be a small number (e.g. 1e-10)
     * @return True if equal
     */
    public static boolean almostEqualRelativeOrAbsolute(double A, double B, double maxRelativeError,
            double maxAbsoluteError) {
        // Check the two numbers are within an absolute distance.
        final double difference = Math.abs(A - B);
        if (difference <= maxAbsoluteError)
            return true;
        final double size = FastMath.max(Math.abs(A), Math.abs(B));
        if (difference <= size * maxRelativeError)
            return true;
        return false;
    }

    /**
     * Compute the relative error between two doubles.
     * 
     * @param A
     * @param B
     * @return The relative error
     */
    public static double relativeError(double A, double B) {
        final double diff = A - B;
        if (diff == 0)
            return 0;
        if (Math.abs(B) > Math.abs(A))
            return Math.abs(diff / B);
        else
            return Math.abs(diff / A);
    }

    /**
     * Compares two doubles are within the specified number of bits variation using long comparisons.
     * 
     * @param A
     * @param B
     * @param maxUlps
     *            How many representable doubles we are willing to accept between A and B
     * @param maxAbsoluteError
     *            The absolute error allowed between the numbers. Should be a small number (e.g. 1e-10)
     * @return True if equal
     */
    public static boolean almostEqualComplement(double A, double B, long maxUlps, double maxAbsoluteError) {
        // Make sure maxUlps is non-negative and small enough that the
        // default NAN won't compare as equal to anything.
        //assert (maxUlps > 0 && maxUlps < 4 * 1024 * 1024);

        if (Math.abs(A - B) < maxAbsoluteError)
            return true;
        if (complement(A, B) <= maxUlps)
            return true;
        return false;
    }

    /**
     * Compares two doubles within the specified number of bits variation using long comparisons.
     * 
     * @param A
     * @param B
     * @param maxUlps
     *            How many representable doubles we are willing to accept between A and B
     * @return -1, 0 or 1
     */
    public static int compareComplement(double A, double B, long maxUlps) {
        long c = signedComplement(A, B);
        if (c < -maxUlps)
            return -1;
        if (c > maxUlps)
            return 1;
        return 0;
    }

    /**
     * @param maxRelativeError
     *            the maxRelativeError to set
     */
    public void setMaxRelativeError(double maxRelativeError) {
        this.maxRelativeError = maxRelativeError;
    }

    /**
     * @return the maxRelativeError
     */
    public double getMaxRelativeError() {
        return maxRelativeError;
    }

    /**
     * @param maxAbsoluteError
     *            the maxAbsoluteError to set
     */
    public void setMaxAbsoluteError(double maxAbsoluteError) {
        this.maxAbsoluteError = maxAbsoluteError;
    }

    /**
     * @return the maxAbsoluteError
     */
    public double getMaxAbsoluteError() {
        return maxAbsoluteError;
    }

    /**
     * @param maxUlps
     *            the maximum error in terms of Units in the Last Place
     */
    public void setMaxUlps(long maxUlps) {
        this.maxUlps = maxUlps;
    }

    /**
     * @return the maximum error in terms of Units in the Last Place
     */
    public long getMaxUlps() {
        return maxUlps;
    }

    /**
     * Set the maximum error in terms of Units in the Last Place using the number of decimal significant digits
     * 
     * @param significantDigits The number of significant digits for comparisons
     */
    public void setSignificantDigits(long significantDigits) {
        this.maxUlps = getUlps(significantDigits);
    }

    // The following methods are different between the FloatEquality and DoubleEquality class

    /**
     * Compute the number of representable doubles until a difference in significant digits
     * <p>
     * The number of doubles are computed between Math.power(10, sig) and 1 + Math.power(10, sig)
     * 
     * @param significantDigits
     *            The significant digits
     * @return The number of representable doubles (Units in the Last Place)
     */
    public static long getUlps(long significantDigits) {
        long value1 = (long) Math.pow(10.0, significantDigits - 1);
        long value2 = value1 + 1;
        long ulps = Double.doubleToRawLongBits((double) value2) - Double.doubleToRawLongBits((double) value1);
        return (ulps < 0) ? 0 : ulps;
    }

    /**
     * Compute the number of bits variation using long comparisons.
     * 
     * @param A
     * @param B
     *            
     * @return How many representable doubles we are between A and B
     */
    public static long complement(double A, double B) {
        long aInt = Double.doubleToRawLongBits(A);
        // Make aInt lexicographically ordered as a twos-complement long
        if (aInt < 0)
            aInt = 0x8000000000000000L - aInt;
        // Make bInt lexicographically ordered as a twos-complement long
        long bInt = Double.doubleToRawLongBits(B);
        if (bInt < 0)
            bInt = 0x8000000000000000L - bInt;
        return Math.abs(aInt - bInt);
    }

    /**
     * Compute the number of bits variation using long comparisons.
     * 
     * @param A
     * @param B
     *            
     * @return How many representable doubles we are between A and B
     */
    public static long signedComplement(double A, double B) {
        long aInt = Double.doubleToRawLongBits(A);
        // Make aInt lexicographically ordered as a twos-complement long
        if (aInt < 0)
            aInt = 0x8000000000000000L - aInt;
        // Make bInt lexicographically ordered as a twos-complement long
        long bInt = Double.doubleToRawLongBits(B);
        if (bInt < 0)
            bInt = 0x8000000000000000L - bInt;
        return aInt - bInt;
    }
}