Java tutorial
/* Copyright 2012 by Dr. Vlasios Voudouris and ABM Analytics Ltd Licensed under the Academic Free License version 3.0 See the file "LICENSE" for more information */ package gamlss.smoothing; import java.util.HashMap; import java.util.Hashtable; import org.apache.commons.math3.analysis.MultivariateFunction; import org.apache.commons.math3.analysis.UnivariateFunction; import org.apache.commons.math3.analysis.solvers.BrentSolver; import org.apache.commons.math3.analysis.solvers.UnivariateSolver; import org.apache.commons.math3.linear.ArrayRealVector; import org.apache.commons.math3.linear.BlockRealMatrix; import org.apache.commons.math3.linear.DecompositionSolver; import org.apache.commons.math3.linear.EigenDecomposition; import org.apache.commons.math3.linear.MatrixUtils; import org.apache.commons.math3.linear.QRDecomposition; import org.apache.commons.math3.optimization.GoalType; import org.apache.commons.math3.optimization.direct.BOBYQAOptimizer; import org.apache.commons.math3.special.Gamma; import org.apache.commons.math3.util.FastMath; import gamlss.utilities.MatrixFunctions; import gamlss.algorithm.AdditiveFit; import gamlss.algorithm.RSAlgorithm; import gamlss.distributions.DistributionSettings; import gamlss.distributions.GAMLSSFamilyDistribution; import gamlss.utilities.ArithmeticSeries; import gamlss.utilities.Controls; import gamlss.utilities.oi.ConnectionToR; /** * 01/08/2012 * @author Dr. Vlasios Voudouris, Daniil Kiose, * Prof. Mikis Stasinopoulos and Dr Robert Rigby. * */ public class PB implements GAMLSSSmoother { /** gM = lambda * t(penaltyM) %*% penaltyM. */ private BlockRealMatrix gM; /** xwM = w * basisM. */ private BlockRealMatrix xwM; /** transpose of xwM .*/ private BlockRealMatrix xwMt; /** xwxM = t(xwM) %*% basisM. */ private BlockRealMatrix xwxM; /** solution of the linear equation A H = B for matrices A.*/ private BlockRealMatrix hM; /** S = transpose(penaltyM)*penaltyM. */ private BlockRealMatrix sM; /** matrix R of the QR decomposition. */ private BlockRealMatrix rM; /** inverse matrix R of the QR decomposition. */ private BlockRealMatrix rMinv; /** augmented basisM matrix. */ private BlockRealMatrix xaug; /** wxM = isM * basisM. */ private BlockRealMatrix wxM; /** augmented w vector. */ private ArrayRealVector waug; /** the hat matrix. */ private ArrayRealVector lev; /** isM = square root of weights vector. */ private ArrayRealVector isM; /** gamma differences. */ private ArrayRealVector gamma; /** the variance of the smoothers. */ private ArrayRealVector var; /** regression coefficient. */ private ArrayRealVector beta; /** fitted values of the distribution parameter. */ private ArrayRealVector fv; /** residuals - difference between the sample * and the estimated function value. */ private ArrayRealVector residuals; /** real parts of the eigenvalues of the original matrix. */ private double[] uduV; /** real parts of the eigenvalues of the original matrix. */ private BlockRealMatrix uduM; /** eighen degree of freedom. */ private double edf; /** sig2 = sum(w * (y - fv) ^ 2) / (n - edf). */ private double sig2; /** tau2 = sum(gamma ^ 2) / (edf-order). */ private double tau2; /**edfTemp1 = edf-df. */ private double edfTemp1; /** edfTemp2 = edf-df. */ private double edfTemp2; /** previously calculated value of lambda. */ private double lambdaOld; /** the no of observations. */ private int n; /** Object of DecompositionSolver class.*/ private DecompositionSolver solver; /** temp lambda value used in interim operations. */ private double lambdaS; /** Temporary vector for interim operations. */ private ArrayRealVector tempV; /** Temporary matrix for interim operations. */ private BlockRealMatrix tempM; /** Temporary array for interim operations. */ private double[] tempArr; /** Temporary double for interim operations. */ private double tempD; /** object of non-linear optimisation objective function. */ private NonLinObjFunction nonLinObj; /** object of uni-root objective function. */ private UniRootObjFunction uniRootObj; /** Object of BOBYQAOptimizer class.*/ private BOBYQAOptimizer optimizer; /** Hashtable to store lambdas. */ private Hashtable<Integer, Double> lambdas = new Hashtable<Integer, Double>(); /** Hashtable to store base matrices for each column of * smoother matrix of each distribution parameter. */ private Hashtable<Integer, Object> baseMatricesSet = new Hashtable<Integer, Object>(); /** Hashtable to store penalty matrices for each column of * smoother matrix of each distribution parameter. */ private Hashtable<Integer, Object> penaltyMatricesSet = new Hashtable<Integer, Object>(); /** Hashtable to store degree of freedom values for each column of * smoother matrix of each distribution parameter. */ private HashMap<Integer, Object> dfValuesSet = new HashMap<Integer, Object>(); /** Hashtable to store base matrices for each column of * smoother matrix of single distribution parameter. */ private Hashtable<Integer, BlockRealMatrix> baseMatrices = new Hashtable<Integer, BlockRealMatrix>(); /** Hashtable to store penalty matrices for each column of * smoother matrix of single distribution parameter. */ private Hashtable<Integer, BlockRealMatrix> penaltyMatrices = new Hashtable<Integer, BlockRealMatrix>(); /** Hashtable to store degree of freedom values for each column of * smoother matrix of single distribution parameter. */ private HashMap<Integer, Integer> dfValues = new HashMap<Integer, Integer>(); /** Object of ConnectionToR class. */ private static ConnectionToR rConnection; /** Fitting distribution parameter. */ private int whichDistParameter; /** Hashtable of initially supplied smoother matrices. */ private HashMap<Integer, BlockRealMatrix> smootherMatrices = new HashMap<Integer, BlockRealMatrix>(); // /** Value of lambda. */ // private Double lambda; /** column number of smoother matrix. */ private int colNum; /** Vector of response variable values. */ private ArrayRealVector y; /** Vector of weights. */ private ArrayRealVector w; /** Basis matrix. */ private BlockRealMatrix basisM; /** Penalty matrix. */ private BlockRealMatrix penaltyM; /** Degrees of freedom. */ private Integer df; /** * Constructor of PB class. * @param distr - object of the fitted distribution belonging * to the gamlss family * @param rConnect - object of ConnectionToR class * @param smoothMatrices - initially suplied smoother matrices for each * of the distribution parameters */ public PB(final GAMLSSFamilyDistribution distr, final ConnectionToR rConnect, final HashMap<Integer, BlockRealMatrix> smoothMatrices) { nonLinObj = new NonLinObjFunction(); uniRootObj = new UniRootObjFunction(); optimizer = new BOBYQAOptimizer(Controls.BOBYQA_INTERPOL_POINTS); this.rConnection = rConnect; this.smootherMatrices = smoothMatrices; for (int i = 1; i < distr.getNumberOfDistribtionParameters() + 1; i++) { if (smoothMatrices.get(i) != null) { // if (smoothMatrices.containsKey(i)) { // Create smoother matrices of zeros lambdas.put(i, Controls.INITIAL_LAMBDA); for (int j = 0; j < smoothMatrices.get(i).getColumnDimension(); j++) { buildMatrices((ArrayRealVector) smoothMatrices.get(i).getColumnVector(j), Controls.DF_USER_DEFINED[i - 1], j); } baseMatricesSet.put(i, baseMatrices.clone()); penaltyMatricesSet.put(i, penaltyMatrices.clone()); dfValuesSet.put(i, dfValues.clone()); baseMatrices.clear(); penaltyMatrices.clear(); dfValues.clear(); // } } } } /** * The main fitting method, initiate appropriate smoothing * function according to incoming parameters. * @param additiveFit -object of AdditiveFoit class * @return reiduals */ //gamlss.pb <- function(x, y, w, xeval = NULL, ...) public ArrayRealVector solve(final AdditiveFit additiveFit) { Double lambda = Controls.LAMBDAS_USER_DEFINED; colNum = additiveFit.getColNum(); y = additiveFit.getZ(); w = additiveFit.getW(); whichDistParameter = additiveFit.getWhichDistParameter(); basisM = (BlockRealMatrix) getBasisM().get(colNum); penaltyM = (BlockRealMatrix) getPenaltyM().get(colNum); df = (Integer) getDfValues().get(colNum); //n <- nrow(X) # the no of observations n = basisM.getRowDimension(); //lambdaS <- get(startLambdaName, envir=gamlss.env) //geting the starting value lambdaS = getLambdas().get(whichDistParameter); //if (lambdaS>=1e+07) lambda <- 1e+07 if (lambdaS >= 1e+07) { lambda = 1e+07; } //if (lambdaS<=1e-07) lambda <- 1e-07 if (lambdaS <= 1e-07) { lambda = 1e-07; } //if (is.null(df)&&!is.null(lambda)||!is.null(df)&&!is.null(lambda)) if (lambda != null) { //fit <- regpen(y, X, w, lambda, D) beta = regpen(lambda); //fv <- X %*% fit$beta fv = (ArrayRealVector) basisM.operate(beta); //else if (is.null(df)&&is.null(lambda)) } else if (df == null) { //lambda <- lambdaS lambda = lambdaS; //switch(control$c," ML"={ switch (Controls.SMOOTH_METHOD) { case DistributionSettings.GAIC: fv = functionGAIC(lambda); break; case DistributionSettings.ML: fv = functionML(lambda); break; case DistributionSettings.ML1: fv = functionML1(lambda); break; case DistributionSettings.EM: System.err.println("EM has not been implemented yet"); break; case DistributionSettings.GCV: fv = functionGCV(lambda); break; default: System.err.println( " Cannot recognise the " + "smoothing method or it has" + "not been implemented yet"); } } else { //QR <- qr(sqrt(w)*X) //Rinv <- solve(qr.R(QR)) rM = (BlockRealMatrix) new QRDecomposition( MatrixFunctions.multVectorMatrix(MatrixFunctions.sqrtVec(w), basisM)).getR(); rM = rM.getSubMatrix(0, rM.getColumnDimension() - 1, 0, rM.getColumnDimension() - 1); rMinv = (BlockRealMatrix) new QRDecomposition(rM).getSolver().getInverse(); //S <- t(D)%*%D sM = penaltyM.transpose().multiply(penaltyM); //UDU <- eigen(t(Rinv)%*%S%*%Rinv) uduV = new EigenDecomposition(rMinv.transpose().multiply(sM).multiply(rMinv)).getRealEigenvalues(); //lambda <- if (sign(edf1_df(0))==sign(edf1_df(100000))) 100000 //in case they have the some sign edfTemp1 = edf1_df(0, df); edfTemp2 = edf1_df(100000.0, df); if (FastMath.signum(edfTemp1) == FastMath.signum(edfTemp2)) { lambda = 100000.0; } else { //else uniroot(edf1_df, c(0,100000))$root uniRootObj.setDf(df); final double relativeAccuracy = 1.0e-12; final double absoluteAccuracy = 1.0e-8; UnivariateSolver uniRootSolver = new BrentSolver(relativeAccuracy, absoluteAccuracy); lambda = uniRootSolver.solve(1000, uniRootObj, 0.0, 100000.0); } //fit <- regpen(y, X, w, lambda, D) beta = regpen(lambda); fv = (ArrayRealVector) basisM.operate(beta); } if (Controls.IF_NEED_THIS) { //waug <- as.vector(c(w, rep(1,nrow(D)))) waug = w.append(MatrixFunctions.repV(1.0, penaltyM.getRowDimension())); //xaug <- as.matrix(rbind(X,sqrt(lambda)*D)) xaug = MatrixFunctions.appendMatricesRows(basisM, (BlockRealMatrix) penaltyM.scalarMultiply(FastMath.sqrt(lambda))); //lev <- hat(sqrt(waug)*xaug,intercept=FALSE)[1:n] //get the hat matrix lev = (ArrayRealVector) MatrixFunctions.getMainDiagonal(new BlockRealMatrix(MatrixFunctions .calculateHat(MatrixFunctions.multVectorMatrix(MatrixFunctions.sqrtVec(waug), xaug)).getData())) .getSubVector(0, n); //lev <- (lev-.hat.WX(w,x)) //subtract the linear since is already fitted lev = lev.subtract( hatWX((ArrayRealVector) getSmootherMatrices().get(whichDistParameter).getColumnVector(colNum))); // var <- lev/w //the variance of the smootherz var = lev.ebeDivide(w); } //if (is.null(xeval)) # if no prediction if (Controls.XEVAL_USER_DEFINED == null) { // Residuals return y.subtract(fv); //else # for prediction } else { //ll <- dim(as.matrix(attr(x,"X")))[1] //nx <- as.matrix(attr(x,"X"))[seq(length(y)+1,ll),] tempArr = ArithmeticSeries.getSeries(y.getDimension() + 1, basisM.getRowDimension(), 1); BlockRealMatrix nx = new BlockRealMatrix(tempArr.length, basisM.getColumnDimension()); for (int i = 0; i < tempArr.length; i++) { nx.setRowVector(i, basisM.getRowVector((int) tempArr[i])); } //pred <- drop(nx %*% fit$beta) ArrayRealVector pred = (ArrayRealVector) nx.operate(beta); // Residuals return y.subtract(fv); } } /** *<p>Compute the "hat" matrix. * </p> * <p>The hat matrix is defined in terms of the design matrix X * by X(X<sup>T</sup>X)<sup>-1</sup>X<sup>T</sup> * </p> * @param xDesign - column of initial smoother matrix * @return hat matrix */ //function (w, x) private ArrayRealVector hatWX(final ArrayRealVector xDesign) { //p <- length(x) int p = xDesign.getDimension(); //X <- if (!is.matrix(x)) // matrix(cbind(1, x), ncol = 2) //else x tempM = new BlockRealMatrix(p, 2); tempM.setColumnVector(0, MatrixFunctions.repV(1, p)); tempM.setColumnVector(1, xDesign); //k <- length(w) //p <- dim(X)[1] //if (p != k) if (p != w.getDimension()) { System.err.println("`w' and 'x' do not have the same length"); //stop("`w' and 'x' are not having the same length") } //Is <- sqrt(w) isM = MatrixFunctions.sqrtVec(w); //if (any(!is.finite(Is))) if (isM.isInfinite()) { //warning("diagonal weights has non-finite entries") System.err.println("diagonal weights has non-finite entries"); } //WX <- X //wxM = tempM; //WX[] <- Is * X wxM = MatrixFunctions.multVectorMatrix(isM, tempM); //h<-hat(qr(WX)) return MatrixFunctions.getMainDiagonal( (BlockRealMatrix) new BlockRealMatrix(MatrixFunctions.calculateHat(wxM).getData())); } /** * local function to get df using eigen values. * @param lambda - smoothing parameter * @param df - degree of freedom * @return sum(1/(1+lambda*UDU$values) - df */ //edf1_df <- function(lambda) private double edf1_df(final double lambda, final double df) { //edf <- sum(1/(1+lambda*UDU$values)) double out = 0; for (int i = 0; i < uduV.length; i++) { out = out + (1 / (1 + lambda * uduV[i])); } //(edf-df) return out - df; } /** * ML smoothing method. * @param lambda - smoothing parameter * @return fitted values */ private ArrayRealVector functionML(Double lambda) { //for (it in 1:50) for (int i = 0; i < Controls.ML_ITER; i++) { //fit <- regpen(y, X, w, lambda, D) //fit model beta = regpen(lambda); //gamma. <- D %*% as.vector(fit$beta) //get the gamma differences gamma = (ArrayRealVector) penaltyM.operate(beta); //fv <- X %*% fit$beta //fitted values fv = (ArrayRealVector) basisM.operate(beta); //sig2 <- sum(w * (y - fv) ^ 2) / (n - fit$edf) tempV = MatrixFunctions.vecSub(y, fv); sig2 = MatrixFunctions.sumV(w.ebeMultiply(tempV.ebeMultiply(tempV))) / (n - getEdf()); tempV = null; //tau2 <- sum(gamma. ^ 2) / (fit$edf-order) tau2 = MatrixFunctions.sumV(gamma.ebeMultiply(gamma)) / (getEdf() - Controls.ORDER); //if(tau2<1e-7) tau2 <- 1.0e-7 if (tau2 < 1e-7) { tau2 = 1e-7; } //lambda.old <- lambda lambdaOld = lambda; //lambda <- sig2 / tau2 lambda = sig2 / tau2; //if (lambda<1.0e-7) lambda<-1.0e-7 if (lambda < 1.0e-7) { lambda = 1.0e-7; } //if (lambda>1.0e+7) lambda<-1.0e+7 if (lambda > 1.0e7) { lambda = 1.0e7; } //if (abs(lambda-lambda.old) < 1.0e-7 ||lambda>1.0e10) break if (FastMath.abs(lambda - lambdaOld) < 1.0e-7 || lambda > 1.0e10) { break; } } setLambda(lambda); return fv; } /** * ML1 smoothing method. * @param lambda - smoothing parameter * @return fitted values */ private ArrayRealVector functionML1(Double lambda) { //for (it in 1:50) for (int i = 0; i < Controls.ML1_ITER; i++) { //fit <- regpen(y, X, w, lambda, D) //fit model beta = regpen(lambda); //gamma. <- D %*% as.vector(fit$beta) //get the gamma differences gamma = (ArrayRealVector) penaltyM.operate(beta); //fv <- X %*% fit$beta //fitted values fv = (ArrayRealVector) basisM.operate(beta); //sig2 <- 1 sig2 = 1.0; //tau2 <- sum(gamma. ^ 2) / (fit$edf-order) tau2 = MatrixFunctions.sumV(gamma.ebeMultiply(gamma)) / (getEdf() - Controls.ORDER); //if(tau2<1e-7) tau2 <- 1.0e-7 if (tau2 < 1e-7) { tau2 = 1e-7; } //lambda.old <- lambda lambdaOld = lambda; //lambda <- sig2 / tau2 lambda = sig2 / tau2; //if (lambda<1.0e-7) lambda<-1.0e-7 if (lambda < 1.0e-7) { lambda = 1.0e-7; } //if (lambda>1.0e+7) lambda<-1.0e+7 if (lambda > 1.0e7) { lambda = 1.0e7; } //if (abs(lambda-lambda.old) < 1.0e-7 ||lambda>1.0e7) break if (FastMath.abs(lambda - lambdaOld) < 1.0e-7 || lambda > 1.0e7) { break; } } setLambda(lambda); return fv; } /** * Simple penalised regression. * @return betas - estimates resulting from an analysis performed */ //regpen <- function(y, X, w, lambda, D) private ArrayRealVector regpen(Double lambda) { //G <- lambda * t(D) %*% D gM = (BlockRealMatrix) penaltyM.transpose().multiply(penaltyM).scalarMultiply(lambda); //XW <- w * X xwM = MatrixFunctions.multVectorMatrix(w, basisM); //XWX <- t(XW) %*% X xwMt = xwM.transpose(); xwxM = xwMt.multiply(basisM); //beta <- solve(XWX + G, t(XW) %*% y) //solver = new SingularValueDecomposition(xwxM.add(gM)).getSolver(); solver = new QRDecomposition(xwxM.add(gM)).getSolver(); beta = (ArrayRealVector) solver.solve((ArrayRealVector) xwMt.operate(y)); //H <- solve(XWX + G, XWX) hM = new BlockRealMatrix(solver.solve(xwxM).getData()); //edf <- sum(diag(H)) //fit <- list(beta = beta, edf = sum(diag(H))) setEdf(hM.getTrace()); return beta; } /** * GCV smoothing method. * @param lambda - smoothing parameter * @return fitted values */ private ArrayRealVector functionGCV(Double lambda) { //QR <-qr(sqrt(w)*X) //Rinv <- solve(qr.R(QR)) QRDecomposition qr = new QRDecomposition( MatrixFunctions.multVectorMatrix(MatrixFunctions.sqrtVec(w), basisM)); rM = (BlockRealMatrix) qr.getR(); rM = rM.getSubMatrix(0, rM.getColumnDimension() - 1, 0, rM.getColumnDimension() - 1); rMinv = (BlockRealMatrix) new QRDecomposition(rM).getSolver().getInverse(); //wy <- sqrt(w)*y ArrayRealVector wy = MatrixFunctions.sqrtVec(w).ebeMultiply(y); //y.y <- sum(wy^2) double y_y = MatrixFunctions.sumV(wy.ebeMultiply(wy)); //S <- t(D)%*%D sM = penaltyM.transpose().multiply(penaltyM); //UDU <- eigen(t(Rinv)%*%S%*%Rinv) uduM = new BlockRealMatrix( new EigenDecomposition(rMinv.transpose().multiply(sM).multiply(rMinv), Controls.SPLIT_TOLERANCE) .getV().getData()); //yy <- t(UDU$vectors)%*%t(qr.Q(QR))%*%wy BlockRealMatrix qM = (BlockRealMatrix) qr.getQ(); //SingularValueDecomposition svd = new SingularValueDecomposition( //MatrixFunctions.multVectorMatrix(MatrixFunctions.sqrtVec(w), basisM)); //BlockRealMatrix qM = new BlockRealMatrix(svd.getV().getData()); //.... to finish !!!!!!! MatrixFunctions.matrixPrint(qM); return null; } /** * GAIC smoothing method. * @param lambda - smoothing parameter * @return fitted values */ private ArrayRealVector functionGAIC(Double lambda) { //lambda <- nlminb(lambda, fnGAIC, //lower = 1.0e-7, upper = 1.0e7, k=control$k)$par lambda = optimizer.optimize(Controls.BOBYQA_MAX_EVAL, nonLinObj, GoalType.MINIMIZE, new double[] { lambda, lambda }, new double[] { Double.MIN_VALUE, Double.MIN_VALUE }, new double[] { Double.MAX_VALUE, Double.MAX_VALUE }).getPoint()[0]; if (lambda > 1.0e+7) { lambda = 1.0e+7; } if (lambda < 1.0e-7) { lambda = 1.0e-7; } //fit <- regpen(y=y, X=X, w=w, lambda=lambda, D) beta = regpen(lambda); //fv <- X %*% fit$beta fv = (ArrayRealVector) basisM.operate(beta); //assign(startLambdaName, lambda, envir=gamlss.env) setLambda(lambda); return fv; } /** * Inner class is a shell for objective function to * find optimal lambda. * */ class NonLinObjFunction implements MultivariateFunction { /** * Implemenrted function. * @param point - point value * @return objective function values */ public double value(final double[] point) { return fnGAIC(point[0]); } } /** * Inner class is a shell for objective function to * find the root of the function. * */ class UniRootObjFunction implements UnivariateFunction { /** degree of freedom. */ private double df; /** * This function is used to evaluate the objective function. * @param x - income value to determine zero of the function * @return value of the function */ public double value(final double x) { return edf1_df(x, df); } /** * Set degree of freedom. * @param df - degree of freedom */ public void setDf(final double df) { this.df = df; } } /** * The objective function GAIC smoothing method optimisation problem. * @param lambda - smoothing parameter * @return sum(w*(y-fv)^2)+k*fit$edf */ private double fnGAIC(Double lambda) { //fnGAIC <- function(lambda, k) //fit <- regpen(y=y, X=X, w=w, lambda=lambda, D) beta = regpen(lambda); //fv <- X %*% fit$beta fv = (ArrayRealVector) basisM.operate(beta); //GAIC <- sum(w*(y-fv)^2)+k*fit$edf tempV = MatrixFunctions.vecSub(y, fv); return MatrixFunctions.sumV(w.ebeMultiply(tempV.ebeMultiply(tempV))) + Controls.K * getEdf(); } /** * Constructs the base and penalty matrices and also sets a * value for degree of freedom. * @param colValues - values of certain column (colNumber) of * the smooth matrix of the fitting distribution parameter * @param df - degree of freedom * @param colNumber - number of the supplied column (colValues) * of the fitting distribution parameter */ //pb<-function(x, df = NULL, lambda = NULL, control=pb.control(...), ...) private void buildMatrices(final ArrayRealVector colValues, Integer df, final int colNumber) { //X <- bbase(x, xmin, xmax, control$inter, control$degree, //control$quantiles) # create the basis BlockRealMatrix xM = formX(colValues); //D <- if(control$order==0) diag(r) else diff(diag(r), //diff=control$order) # the penalty matrix BlockRealMatrix dM = formD(xM); //if(!is.null(df)) # degrees of freedom if (df != null) { //if (df>(dim(X)[2]-2)) if (df > xM.getColumnDimension() - 2) { //df <- 3; df = 3; //warning("The df's exceed the //number of columns of the design //matrix", "\n", " they are set to 3") System.err.println( "The df's exceed the number of columns " + " of the design matrix, they are set to 3"); } if (df < 0) { //if (df < 0) warning("the extra df's are set to 0") //df <- if (df < 0) 2 else df+2 System.err.println("the extra df's are set to 2"); df = 2; } else { df = df + 2; } } baseMatrices.put(colNumber, xM); penaltyMatrices.put(colNumber, dM); dfValues.put(colNumber, df); } /** * Constructs the base matrix. * @param colValues - values of the certain column of * the smooth matrix which corresponds to the * currently fitting distribution parameter * @return - base matrix */ //bbase <- function(x, xl, xr, ndx, deg, quantiles=FALSE) private static BlockRealMatrix formX(final ArrayRealVector colValues) { //control$inter <- if (lx<99) 10 else control$inter # //this is to prevent singularities when length(x) is small if (colValues.getDimension() < 99) { Controls.INTER = 10; } //xl <- min(x) double xl = colValues.getMinValue(); //xr <- max(x) double xr = colValues.getMaxValue(); //xmax <- xr + 0.01 * (xr - xl) double xmax = xr + 0.01 * (xr - xl); //xmin <- xl - 0.01 * (xr - xl) double xmin = xl - 0.01 * (xr - xl); //dx <- (xr - xl) / ndx double dx = (xmax - xmin) / Controls.INTER; //if (quantiles) # if true use splineDesign if (Controls.QUANTILES) { //knots <- sort(c(seq(xl-deg*dx, xl, dx),quantile(x, //prob=seq(0, 1, length=ndx)), seq(xr, xr+deg*dx, dx))) ArrayRealVector kts = null; //B <- splineDesign(knots, x = x, outer.ok = TRUE, ord=deg+1) //return(B) return null; } else { //kts <- seq(xl - deg * dx, xr + deg * dx, by = dx) //ArrayRealVector kts = new ArrayRealVector( //ArithmeticSeries.getSeries(xl-deg*dx, xr+deg*dx, dx),false); rConnection.assingVar("min", new double[] { xmin - Controls.DEGREE * dx }); rConnection.assingVar("max", new double[] { xmax + Controls.DEGREE * dx }); rConnection.assingVar("step", new double[] { dx }); ArrayRealVector kts = new ArrayRealVector( rConnection.runEvalDoubles("knots <- seq(min, max, by = step)")); //P <- outer(x, kts, FUN = tpower, deg) BlockRealMatrix pM = MatrixFunctions.outertpowerPB(colValues, kts, Controls.DEGREE); //D <- diff(diag(dim(P)[2]), //diff = deg + 1) / (gamma(deg + 1) * dx ^ deg) BlockRealMatrix tempM = MatrixFunctions .diff(MatrixFunctions.buildIdentityMatrix(pM.getColumnDimension()), Controls.DEGREE + 1); double[][] tempArrArr = new double[tempM.getRowDimension()][tempM.getColumnDimension()]; for (int i = 0; i < tempArrArr.length; i++) { for (int j = 0; j < tempArrArr[i].length; j++) { tempArrArr[i][j] = tempM.getEntry(i, j) / ((FastMath.exp(Gamma.logGamma(Controls.DEGREE + 1))) * FastMath.pow(dx, Controls.DEGREE)); } } tempM = new BlockRealMatrix(tempArrArr); //B <- (-1) ^ (deg + 1) * P %*% t(D) return (BlockRealMatrix) pM.multiply(tempM.transpose()) .scalarMultiply(FastMath.pow(-1, (Controls.DEGREE + 1))); } } /** * Constructs the penalty matrix. * @param xM - base matrix * @return penalty matrix */ private BlockRealMatrix formD(final BlockRealMatrix xM) { tempArr = new double[xM.getColumnDimension()]; for (int i = 0; i < tempArr.length; i++) { tempArr[i] = 1.0; } if (Controls.ORDER == 0) { return new BlockRealMatrix(MatrixUtils.createRealDiagonalMatrix(tempArr).getData()); } else { return MatrixFunctions.diff( new BlockRealMatrix(MatrixUtils.createRealDiagonalMatrix(tempArr).getData()), Controls.ORDER); } } /** * Get a set (for all distr parameters) of lambdas. * @return set of lambdas */ public final Hashtable<Integer, Double> getLambdas() { return lambdas; } /** * * @param lambda - single smoothing parameterer * attributes to the currently fitting distribution * parameter. */ public final void setLambda(final double lambda) { lambdas.put(whichDistParameter, lambda); } /** * Get degree of freedom values for each column of smoother * matrix of each distribution parameter. * @return - set of degree of freedom values */ public final HashMap<Integer, Object> getDfValuesSet() { return dfValuesSet; } /** * Get a penalty matrix for each column of smoother * matrix of each distribution parameter. * @return penalty matrix */ public final Hashtable<Integer, Object> getPenaltyMatricesSet() { return penaltyMatricesSet; } /** * Get a base matrix for each column of smoother * matrix of each distribution parameter. * @return base matrix */ public final Hashtable<Integer, Object> getBaseMatricesSet() { return baseMatricesSet; } /** * Get a set of initially suppplied smoother matrices. * @return set of initially suppplied smoother matrices */ public final HashMap<Integer, BlockRealMatrix> getSmootherMatrices() { return smootherMatrices; } /** * Get basis matrix. * @return basis matrix */ public final Hashtable getBasisM() { return (Hashtable) baseMatricesSet.get(whichDistParameter); } /** * Get penalty matrix. * @return penalty matrix */ public final Hashtable getPenaltyM() { return (Hashtable) penaltyMatricesSet.get(whichDistParameter); } /** * Get degree of freedom. * @return degree of freedom */ public final HashMap getDfValues() { return (HashMap) dfValuesSet.get(whichDistParameter); } /** * Set eighen degree of freedom. * @param edf - eighen degree of freedom */ public final void setEdf(final double edf) { this.edf = edf; } /** * Get eighen degree of freedom. * @return edf */ public final double getEdf() { return edf; } //public double getEdf() { // return edf-2; //} /** * Get variance. * @return variance */ public final ArrayRealVector getVar() { return var; } }