gamlss.smoothing.PB.java Source code

Java tutorial

Introduction

Here is the source code for gamlss.smoothing.PB.java

Source

/*
  Copyright 2012 by Dr. Vlasios Voudouris and ABM Analytics Ltd
  Licensed under the Academic Free License version 3.0
  See the file "LICENSE" for more information
*/
package gamlss.smoothing;

import java.util.HashMap;
import java.util.Hashtable;

import org.apache.commons.math3.analysis.MultivariateFunction;
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.analysis.solvers.BrentSolver;
import org.apache.commons.math3.analysis.solvers.UnivariateSolver;
import org.apache.commons.math3.linear.ArrayRealVector;
import org.apache.commons.math3.linear.BlockRealMatrix;
import org.apache.commons.math3.linear.DecompositionSolver;
import org.apache.commons.math3.linear.EigenDecomposition;
import org.apache.commons.math3.linear.MatrixUtils;
import org.apache.commons.math3.linear.QRDecomposition;
import org.apache.commons.math3.optimization.GoalType;
import org.apache.commons.math3.optimization.direct.BOBYQAOptimizer;
import org.apache.commons.math3.special.Gamma;
import org.apache.commons.math3.util.FastMath;
import gamlss.utilities.MatrixFunctions;
import gamlss.algorithm.AdditiveFit;
import gamlss.algorithm.RSAlgorithm;
import gamlss.distributions.DistributionSettings;
import gamlss.distributions.GAMLSSFamilyDistribution;
import gamlss.utilities.ArithmeticSeries;
import gamlss.utilities.Controls;
import gamlss.utilities.oi.ConnectionToR;

/**
 * 01/08/2012
 * @author Dr. Vlasios Voudouris, Daniil Kiose, 
 * Prof. Mikis Stasinopoulos and Dr Robert Rigby.
 *
 */
public class PB implements GAMLSSSmoother {

    /** gM = lambda * t(penaltyM) %*% penaltyM. */
    private BlockRealMatrix gM;
    /** xwM = w * basisM. */
    private BlockRealMatrix xwM;
    /** transpose of xwM .*/
    private BlockRealMatrix xwMt;
    /** xwxM = t(xwM) %*% basisM. */
    private BlockRealMatrix xwxM;
    /** solution of the linear equation A  H = B for matrices A.*/
    private BlockRealMatrix hM;
    /** S = transpose(penaltyM)*penaltyM. */
    private BlockRealMatrix sM;
    /** matrix R of the QR decomposition.  */
    private BlockRealMatrix rM;
    /** inverse matrix R of the QR decomposition.  */
    private BlockRealMatrix rMinv;
    /** augmented basisM matrix. */
    private BlockRealMatrix xaug;
    /** wxM = isM * basisM. */
    private BlockRealMatrix wxM;
    /** augmented w vector. */
    private ArrayRealVector waug;
    /** the hat matrix. */
    private ArrayRealVector lev;
    /** isM = square root of weights vector. */
    private ArrayRealVector isM;
    /** gamma differences. */
    private ArrayRealVector gamma;
    /** the variance of the smoothers. */
    private ArrayRealVector var;
    /** regression coefficient. */
    private ArrayRealVector beta;
    /** fitted values of the distribution parameter. */
    private ArrayRealVector fv;
    /** residuals - difference between the sample 
     * and the estimated function value. */
    private ArrayRealVector residuals;
    /** real parts of the eigenvalues of the original matrix. */
    private double[] uduV;
    /** real parts of the eigenvalues of the original matrix. */
    private BlockRealMatrix uduM;
    /** eighen degree of freedom. */
    private double edf;
    /** sig2 = sum(w * (y - fv) ^ 2) / (n - edf). */
    private double sig2;
    /** tau2 = sum(gamma ^ 2) / (edf-order). */
    private double tau2;
    /**edfTemp1 = edf-df. */
    private double edfTemp1;
    /** edfTemp2 = edf-df. */
    private double edfTemp2;
    /** previously calculated value of lambda. */
    private double lambdaOld;
    /** the no of observations. */
    private int n;
    /** Object of DecompositionSolver class.*/
    private DecompositionSolver solver;
    /** temp lambda value used in interim operations. */
    private double lambdaS;
    /** Temporary vector for interim operations. */
    private ArrayRealVector tempV;
    /** Temporary matrix for interim operations. */
    private BlockRealMatrix tempM;
    /** Temporary array for interim operations. */
    private double[] tempArr;
    /** Temporary double for interim operations. */
    private double tempD;
    /** object of non-linear optimisation objective function.  */
    private NonLinObjFunction nonLinObj;
    /** object of uni-root objective function. */
    private UniRootObjFunction uniRootObj;
    /** Object of BOBYQAOptimizer class.*/
    private BOBYQAOptimizer optimizer;

    /** Hashtable to store lambdas. */
    private Hashtable<Integer, Double> lambdas = new Hashtable<Integer, Double>();
    /** Hashtable to store base matrices for each column of 
     * smoother matrix of each distribution parameter. */
    private Hashtable<Integer, Object> baseMatricesSet = new Hashtable<Integer, Object>();
    /** Hashtable to store penalty matrices for each column of 
     * smoother matrix of each distribution parameter. */
    private Hashtable<Integer, Object> penaltyMatricesSet = new Hashtable<Integer, Object>();
    /** Hashtable to store degree of freedom values for each column of 
     * smoother matrix of each distribution parameter. */
    private HashMap<Integer, Object> dfValuesSet = new HashMap<Integer, Object>();
    /** Hashtable to store base matrices for each column of 
     * smoother matrix of single distribution parameter. */
    private Hashtable<Integer, BlockRealMatrix> baseMatrices = new Hashtable<Integer, BlockRealMatrix>();
    /** Hashtable to store penalty matrices for each column of 
     * smoother matrix of single distribution parameter. */
    private Hashtable<Integer, BlockRealMatrix> penaltyMatrices = new Hashtable<Integer, BlockRealMatrix>();
    /** Hashtable to store degree of freedom values for each column of 
     * smoother matrix of single distribution parameter. */
    private HashMap<Integer, Integer> dfValues = new HashMap<Integer, Integer>();
    /** Object of ConnectionToR class. */
    private static ConnectionToR rConnection;
    /** Fitting distribution parameter. */
    private int whichDistParameter;
    /** Hashtable of initially supplied smoother matrices. */
    private HashMap<Integer, BlockRealMatrix> smootherMatrices = new HashMap<Integer, BlockRealMatrix>();
    //   /** Value of lambda. */
    //   private Double lambda;
    /** column number of smoother matrix. */
    private int colNum;
    /** Vector of response variable values. */
    private ArrayRealVector y;
    /** Vector of weights. */
    private ArrayRealVector w;
    /** Basis matrix. */
    private BlockRealMatrix basisM;
    /** Penalty matrix. */
    private BlockRealMatrix penaltyM;
    /** Degrees of freedom. */
    private Integer df;

    /**
     * Constructor of PB class.
     * @param distr - object of the fitted distribution belonging
     *  to the gamlss family
     * @param rConnect - object of ConnectionToR class
     * @param smoothMatrices - initially suplied smoother matrices for each 
     * of the distribution parameters
     */
    public PB(final GAMLSSFamilyDistribution distr, final ConnectionToR rConnect,
            final HashMap<Integer, BlockRealMatrix> smoothMatrices) {

        nonLinObj = new NonLinObjFunction();
        uniRootObj = new UniRootObjFunction();
        optimizer = new BOBYQAOptimizer(Controls.BOBYQA_INTERPOL_POINTS);
        this.rConnection = rConnect;
        this.smootherMatrices = smoothMatrices;

        for (int i = 1; i < distr.getNumberOfDistribtionParameters() + 1; i++) {
            if (smoothMatrices.get(i) != null) {
                //            if (smoothMatrices.containsKey(i)) {
                // Create smoother matrices of zeros
                lambdas.put(i, Controls.INITIAL_LAMBDA);
                for (int j = 0; j < smoothMatrices.get(i).getColumnDimension(); j++) {
                    buildMatrices((ArrayRealVector) smoothMatrices.get(i).getColumnVector(j),
                            Controls.DF_USER_DEFINED[i - 1], j);
                }
                baseMatricesSet.put(i, baseMatrices.clone());
                penaltyMatricesSet.put(i, penaltyMatrices.clone());
                dfValuesSet.put(i, dfValues.clone());
                baseMatrices.clear();
                penaltyMatrices.clear();
                dfValues.clear();

                //            }
            }
        }
    }

    /**
     * The main fitting method, initiate appropriate smoothing 
     * function according to incoming parameters.
     * @param additiveFit -object of AdditiveFoit class
     * @return reiduals
     */
    //gamlss.pb <- function(x, y, w, xeval = NULL, ...)      
    public ArrayRealVector solve(final AdditiveFit additiveFit) {

        Double lambda = Controls.LAMBDAS_USER_DEFINED;
        colNum = additiveFit.getColNum();
        y = additiveFit.getZ();
        w = additiveFit.getW();
        whichDistParameter = additiveFit.getWhichDistParameter();
        basisM = (BlockRealMatrix) getBasisM().get(colNum);
        penaltyM = (BlockRealMatrix) getPenaltyM().get(colNum);
        df = (Integer) getDfValues().get(colNum);

        //n <- nrow(X) # the no of observations
        n = basisM.getRowDimension();

        //lambdaS <-  get(startLambdaName, envir=gamlss.env)
        //geting the starting value
        lambdaS = getLambdas().get(whichDistParameter);

        //if (lambdaS>=1e+07) lambda <- 1e+07
        if (lambdaS >= 1e+07) {
            lambda = 1e+07;
        }
        //if (lambdaS<=1e-07) lambda <- 1e-07
        if (lambdaS <= 1e-07) {
            lambda = 1e-07;
        }

        //if (is.null(df)&&!is.null(lambda)||!is.null(df)&&!is.null(lambda))
        if (lambda != null) {

            //fit <- regpen(y, X, w, lambda, D)
            beta = regpen(lambda);

            //fv <- X %*% fit$beta
            fv = (ArrayRealVector) basisM.operate(beta);

            //else if (is.null(df)&&is.null(lambda))
        } else if (df == null) {

            //lambda <- lambdaS
            lambda = lambdaS;

            //switch(control$c," ML"={
            switch (Controls.SMOOTH_METHOD) {
            case DistributionSettings.GAIC:
                fv = functionGAIC(lambda);
                break;
            case DistributionSettings.ML:
                fv = functionML(lambda);
                break;
            case DistributionSettings.ML1:
                fv = functionML1(lambda);
                break;
            case DistributionSettings.EM:
                System.err.println("EM has not been implemented yet");
                break;
            case DistributionSettings.GCV:
                fv = functionGCV(lambda);
                break;
            default:
                System.err.println(
                        " Cannot recognise the " + "smoothing method or it has" + "not been implemented yet");
            }
        } else {

            //QR <- qr(sqrt(w)*X)
            //Rinv <- solve(qr.R(QR))
            rM = (BlockRealMatrix) new QRDecomposition(
                    MatrixFunctions.multVectorMatrix(MatrixFunctions.sqrtVec(w), basisM)).getR();
            rM = rM.getSubMatrix(0, rM.getColumnDimension() - 1, 0, rM.getColumnDimension() - 1);
            rMinv = (BlockRealMatrix) new QRDecomposition(rM).getSolver().getInverse();

            //S   <- t(D)%*%D
            sM = penaltyM.transpose().multiply(penaltyM);

            //UDU <- eigen(t(Rinv)%*%S%*%Rinv)
            uduV = new EigenDecomposition(rMinv.transpose().multiply(sM).multiply(rMinv)).getRealEigenvalues();

            //lambda <- if (sign(edf1_df(0))==sign(edf1_df(100000))) 100000
            //in case they have the some sign
            edfTemp1 = edf1_df(0, df);
            edfTemp2 = edf1_df(100000.0, df);

            if (FastMath.signum(edfTemp1) == FastMath.signum(edfTemp2)) {
                lambda = 100000.0;
            } else {

                //else uniroot(edf1_df, c(0,100000))$root
                uniRootObj.setDf(df);
                final double relativeAccuracy = 1.0e-12;
                final double absoluteAccuracy = 1.0e-8;
                UnivariateSolver uniRootSolver = new BrentSolver(relativeAccuracy, absoluteAccuracy);
                lambda = uniRootSolver.solve(1000, uniRootObj, 0.0, 100000.0);
            }

            //fit <- regpen(y, X, w, lambda, D)
            beta = regpen(lambda);
            fv = (ArrayRealVector) basisM.operate(beta);
        }
        if (Controls.IF_NEED_THIS) {

            //waug <- as.vector(c(w, rep(1,nrow(D))))
            waug = w.append(MatrixFunctions.repV(1.0, penaltyM.getRowDimension()));

            //xaug <- as.matrix(rbind(X,sqrt(lambda)*D))
            xaug = MatrixFunctions.appendMatricesRows(basisM,
                    (BlockRealMatrix) penaltyM.scalarMultiply(FastMath.sqrt(lambda)));

            //lev <- hat(sqrt(waug)*xaug,intercept=FALSE)[1:n]
            //get the hat matrix
            lev = (ArrayRealVector) MatrixFunctions.getMainDiagonal(new BlockRealMatrix(MatrixFunctions
                    .calculateHat(MatrixFunctions.multVectorMatrix(MatrixFunctions.sqrtVec(waug), xaug)).getData()))
                    .getSubVector(0, n);

            //lev <- (lev-.hat.WX(w,x))
            //subtract  the linear since is already fitted 
            lev = lev.subtract(
                    hatWX((ArrayRealVector) getSmootherMatrices().get(whichDistParameter).getColumnVector(colNum)));

            // var <- lev/w
            //the variance of the smootherz
            var = lev.ebeDivide(w);
        }

        //if (is.null(xeval)) # if no prediction
        if (Controls.XEVAL_USER_DEFINED == null) {
            // Residuals
            return y.subtract(fv);

            //else # for prediction
        } else {

            //ll <- dim(as.matrix(attr(x,"X")))[1]                 
            //nx <- as.matrix(attr(x,"X"))[seq(length(y)+1,ll),]
            tempArr = ArithmeticSeries.getSeries(y.getDimension() + 1, basisM.getRowDimension(), 1);
            BlockRealMatrix nx = new BlockRealMatrix(tempArr.length, basisM.getColumnDimension());
            for (int i = 0; i < tempArr.length; i++) {
                nx.setRowVector(i, basisM.getRowVector((int) tempArr[i]));
            }

            //pred <- drop(nx %*% fit$beta)
            ArrayRealVector pred = (ArrayRealVector) nx.operate(beta);

            // Residuals
            return y.subtract(fv);
        }
    }

    /**
     *<p>Compute the "hat" matrix.
     * </p>
     * <p>The hat matrix is defined in terms of the design matrix X
     *  by X(X<sup>T</sup>X)<sup>-1</sup>X<sup>T</sup>
     * </p>
     * @param xDesign - column of initial smoother matrix
     * @return hat matrix
     */
    //function (w, x) 
    private ArrayRealVector hatWX(final ArrayRealVector xDesign) {
        //p <- length(x)
        int p = xDesign.getDimension();
        //X <- if (!is.matrix(x)) 
        // matrix(cbind(1, x), ncol = 2)
        //else x
        tempM = new BlockRealMatrix(p, 2);
        tempM.setColumnVector(0, MatrixFunctions.repV(1, p));
        tempM.setColumnVector(1, xDesign);

        //k <- length(w)
        //p <- dim(X)[1]
        //if (p != k)
        if (p != w.getDimension()) {
            System.err.println("`w' and 'x' do not have the same length");
            //stop("`w' and 'x' are not having the same length")
        }

        //Is <- sqrt(w)
        isM = MatrixFunctions.sqrtVec(w);

        //if (any(!is.finite(Is))) 
        if (isM.isInfinite()) {
            //warning("diagonal weights has non-finite entries")
            System.err.println("diagonal weights has non-finite entries");
        }

        //WX <- X
        //wxM = tempM;

        //WX[] <- Is * X
        wxM = MatrixFunctions.multVectorMatrix(isM, tempM);

        //h<-hat(qr(WX))
        return MatrixFunctions.getMainDiagonal(
                (BlockRealMatrix) new BlockRealMatrix(MatrixFunctions.calculateHat(wxM).getData()));
    }

    /**
     * local function to get df using eigen values.
     * @param lambda - smoothing parameter
     * @param df - degree of freedom
     * @return sum(1/(1+lambda*UDU$values) - df
     */
    //edf1_df <- function(lambda)
    private double edf1_df(final double lambda, final double df) {
        //edf <- sum(1/(1+lambda*UDU$values))
        double out = 0;
        for (int i = 0; i < uduV.length; i++) {
            out = out + (1 / (1 + lambda * uduV[i]));
        }
        //(edf-df)
        return out - df;
    }

    /**
     * ML smoothing method.
     * @param lambda - smoothing parameter
     * @return fitted values
     */
    private ArrayRealVector functionML(Double lambda) {

        //for (it in 1:50)
        for (int i = 0; i < Controls.ML_ITER; i++) {

            //fit <- regpen(y, X, w, lambda, D)
            //fit model
            beta = regpen(lambda);

            //gamma. <- D %*% as.vector(fit$beta)
            //get the gamma differences
            gamma = (ArrayRealVector) penaltyM.operate(beta);

            //fv <- X %*% fit$beta
            //fitted values
            fv = (ArrayRealVector) basisM.operate(beta);

            //sig2 <- sum(w * (y - fv) ^ 2) / (n - fit$edf)
            tempV = MatrixFunctions.vecSub(y, fv);
            sig2 = MatrixFunctions.sumV(w.ebeMultiply(tempV.ebeMultiply(tempV))) / (n - getEdf());
            tempV = null;

            //tau2 <- sum(gamma. ^ 2) / (fit$edf-order)
            tau2 = MatrixFunctions.sumV(gamma.ebeMultiply(gamma)) / (getEdf() - Controls.ORDER);

            //if(tau2<1e-7) tau2 <- 1.0e-7
            if (tau2 < 1e-7) {
                tau2 = 1e-7;
            }

            //lambda.old <- lambda
            lambdaOld = lambda;

            //lambda <- sig2 / tau2
            lambda = sig2 / tau2;

            //if (lambda<1.0e-7) lambda<-1.0e-7 
            if (lambda < 1.0e-7) {
                lambda = 1.0e-7;
            }
            //if (lambda>1.0e+7) lambda<-1.0e+7
            if (lambda > 1.0e7) {
                lambda = 1.0e7;
            }

            //if (abs(lambda-lambda.old) < 1.0e-7        ||lambda>1.0e10) break
            if (FastMath.abs(lambda - lambdaOld) < 1.0e-7 || lambda > 1.0e10) {
                break;
            }
        }
        setLambda(lambda);
        return fv;
    }

    /**
     * ML1 smoothing method.
     * @param lambda - smoothing parameter
     * @return fitted values
     */
    private ArrayRealVector functionML1(Double lambda) {

        //for (it in 1:50)
        for (int i = 0; i < Controls.ML1_ITER; i++) {

            //fit <- regpen(y, X, w, lambda, D)
            //fit model
            beta = regpen(lambda);

            //gamma. <- D %*% as.vector(fit$beta)
            //get the gamma differences
            gamma = (ArrayRealVector) penaltyM.operate(beta);

            //fv <- X %*% fit$beta
            //fitted values
            fv = (ArrayRealVector) basisM.operate(beta);

            //sig2 <- 1
            sig2 = 1.0;

            //tau2 <- sum(gamma. ^ 2) / (fit$edf-order)
            tau2 = MatrixFunctions.sumV(gamma.ebeMultiply(gamma)) / (getEdf() - Controls.ORDER);

            //if(tau2<1e-7) tau2 <- 1.0e-7
            if (tau2 < 1e-7) {
                tau2 = 1e-7;
            }

            //lambda.old <- lambda
            lambdaOld = lambda;

            //lambda <- sig2 / tau2
            lambda = sig2 / tau2;

            //if (lambda<1.0e-7) lambda<-1.0e-7 
            if (lambda < 1.0e-7) {
                lambda = 1.0e-7;
            }
            //if (lambda>1.0e+7) lambda<-1.0e+7
            if (lambda > 1.0e7) {
                lambda = 1.0e7;
            }

            //if (abs(lambda-lambda.old) < 1.0e-7        ||lambda>1.0e7) break
            if (FastMath.abs(lambda - lambdaOld) < 1.0e-7 || lambda > 1.0e7) {
                break;
            }
        }
        setLambda(lambda);
        return fv;
    }

    /**
     * Simple penalised regression.
     * @return betas - estimates resulting from an analysis performed
     */
    //regpen <- function(y, X, w, lambda, D)
    private ArrayRealVector regpen(Double lambda) {

        //G <- lambda * t(D) %*% D
        gM = (BlockRealMatrix) penaltyM.transpose().multiply(penaltyM).scalarMultiply(lambda);
        //XW <- w * X
        xwM = MatrixFunctions.multVectorMatrix(w, basisM);

        //XWX <- t(XW) %*% X
        xwMt = xwM.transpose();
        xwxM = xwMt.multiply(basisM);

        //beta <- solve(XWX + G, t(XW) %*% y)
        //solver = new SingularValueDecomposition(xwxM.add(gM)).getSolver();
        solver = new QRDecomposition(xwxM.add(gM)).getSolver();
        beta = (ArrayRealVector) solver.solve((ArrayRealVector) xwMt.operate(y));

        //H <- solve(XWX + G, XWX)
        hM = new BlockRealMatrix(solver.solve(xwxM).getData());

        //edf <- sum(diag(H))
        //fit <- list(beta = beta, edf = sum(diag(H)))
        setEdf(hM.getTrace());

        return beta;
    }

    /**
      * GCV smoothing method.
      * @param lambda - smoothing parameter
      * @return fitted values
      */
    private ArrayRealVector functionGCV(Double lambda) {

        //QR <-qr(sqrt(w)*X)
        //Rinv <- solve(qr.R(QR))
        QRDecomposition qr = new QRDecomposition(
                MatrixFunctions.multVectorMatrix(MatrixFunctions.sqrtVec(w), basisM));
        rM = (BlockRealMatrix) qr.getR();
        rM = rM.getSubMatrix(0, rM.getColumnDimension() - 1, 0, rM.getColumnDimension() - 1);
        rMinv = (BlockRealMatrix) new QRDecomposition(rM).getSolver().getInverse();

        //wy <- sqrt(w)*y
        ArrayRealVector wy = MatrixFunctions.sqrtVec(w).ebeMultiply(y);

        //y.y <- sum(wy^2)
        double y_y = MatrixFunctions.sumV(wy.ebeMultiply(wy));

        //S   <- t(D)%*%D
        sM = penaltyM.transpose().multiply(penaltyM);

        //UDU <- eigen(t(Rinv)%*%S%*%Rinv)
        uduM = new BlockRealMatrix(
                new EigenDecomposition(rMinv.transpose().multiply(sM).multiply(rMinv), Controls.SPLIT_TOLERANCE)
                        .getV().getData());

        //yy <- t(UDU$vectors)%*%t(qr.Q(QR))%*%wy
        BlockRealMatrix qM = (BlockRealMatrix) qr.getQ();
        //SingularValueDecomposition svd = new SingularValueDecomposition(
        //MatrixFunctions.multVectorMatrix(MatrixFunctions.sqrtVec(w), basisM));
        //BlockRealMatrix qM = new BlockRealMatrix(svd.getV().getData());

        //.... to finish !!!!!!!
        MatrixFunctions.matrixPrint(qM);
        return null;
    }

    /**
     * GAIC smoothing method.
     * @param lambda - smoothing parameter
     * @return fitted values
     */
    private ArrayRealVector functionGAIC(Double lambda) {

        //lambda <- nlminb(lambda, fnGAIC,  
        //lower = 1.0e-7, upper = 1.0e7, k=control$k)$par
        lambda = optimizer.optimize(Controls.BOBYQA_MAX_EVAL, nonLinObj, GoalType.MINIMIZE,
                new double[] { lambda, lambda }, new double[] { Double.MIN_VALUE, Double.MIN_VALUE },
                new double[] { Double.MAX_VALUE, Double.MAX_VALUE }).getPoint()[0];

        if (lambda > 1.0e+7) {
            lambda = 1.0e+7;
        }
        if (lambda < 1.0e-7) {
            lambda = 1.0e-7;
        }

        //fit <- regpen(y=y, X=X, w=w, lambda=lambda, D)
        beta = regpen(lambda);

        //fv <- X %*% fit$beta     
        fv = (ArrayRealVector) basisM.operate(beta);

        //assign(startLambdaName, lambda, envir=gamlss.env)
        setLambda(lambda);
        return fv;
    }

    /**
     * Inner class is a shell for objective function to
     * find optimal lambda.
     *
     */
    class NonLinObjFunction implements MultivariateFunction {
        /**
         * Implemenrted function.
         * @param point - point value
         * @return objective function values
         */
        public double value(final double[] point) {
            return fnGAIC(point[0]);
        }
    }

    /**
     * Inner class is a shell for objective function to
     * find the root of the function.
     *
     */
    class UniRootObjFunction implements UnivariateFunction {

        /** degree of freedom. */
        private double df;

        /**
         * This function is used to evaluate the objective function.
         * @param x - income value to determine zero of the function
         * @return value of the function
         */
        public double value(final double x) {
            return edf1_df(x, df);
        }

        /**
         * Set degree of freedom.
         * @param df - degree of freedom
         */
        public void setDf(final double df) {
            this.df = df;
        }

    }

    /**
     * The objective function GAIC smoothing method optimisation problem.
     * @param lambda - smoothing parameter
     * @return sum(w*(y-fv)^2)+k*fit$edf
     */
    private double fnGAIC(Double lambda) {
        //fnGAIC <- function(lambda, k)

        //fit <- regpen(y=y, X=X, w=w, lambda=lambda, D)
        beta = regpen(lambda);

        //fv <- X %*% fit$beta
        fv = (ArrayRealVector) basisM.operate(beta);

        //GAIC <- sum(w*(y-fv)^2)+k*fit$edf
        tempV = MatrixFunctions.vecSub(y, fv);
        return MatrixFunctions.sumV(w.ebeMultiply(tempV.ebeMultiply(tempV))) + Controls.K * getEdf();
    }

    /**
     * Constructs the base and penalty matrices and also sets a
     *  value for degree of freedom.
     * @param colValues - values of certain column (colNumber) of
     *  the smooth matrix of the fitting distribution parameter 
     * @param df - degree of freedom
     * @param colNumber - number of the supplied column (colValues)
     *  of the fitting distribution parameter
     */
    //pb<-function(x, df = NULL, lambda = NULL, control=pb.control(...), ...)
    private void buildMatrices(final ArrayRealVector colValues, Integer df, final int colNumber) {
        //X <- bbase(x, xmin, xmax, control$inter, control$degree,
        //control$quantiles) # create the basis
        BlockRealMatrix xM = formX(colValues);

        //D <- if(control$order==0) diag(r) else diff(diag(r),
        //diff=control$order) # the penalty matrix
        BlockRealMatrix dM = formD(xM);

        //if(!is.null(df)) # degrees of freedom
        if (df != null) {
            //if (df>(dim(X)[2]-2))
            if (df > xM.getColumnDimension() - 2) {
                //df <- 3;
                df = 3;

                //warning("The df's exceed the 
                //number of columns of the design
                //matrix", "\n",  "   they are set to 3") 
                System.err.println(
                        "The df's exceed the number of columns " + " of the design matrix, they are set to 3");
            }
            if (df < 0) {
                //if (df < 0)  warning("the extra df's are set to 0") 
                //df <- if (df < 0)  2  else  df+2
                System.err.println("the extra df's are set to 2");
                df = 2;
            } else {
                df = df + 2;
            }
        }
        baseMatrices.put(colNumber, xM);
        penaltyMatrices.put(colNumber, dM);
        dfValues.put(colNumber, df);
    }

    /**
    * Constructs the base matrix.
    * @param colValues - values of the certain column of
    *  the smooth matrix which corresponds to the 
    *  currently fitting distribution parameter
    * @return - base matrix
    */
    //bbase <- function(x, xl, xr, ndx, deg, quantiles=FALSE)
    private static BlockRealMatrix formX(final ArrayRealVector colValues) {

        //control$inter <- if (lx<99) 10 else control$inter # 
        //this is to prevent singularities when length(x) is small
        if (colValues.getDimension() < 99) {
            Controls.INTER = 10;
        }

        //xl <- min(x)
        double xl = colValues.getMinValue();

        //xr <- max(x)
        double xr = colValues.getMaxValue();

        //xmax <- xr + 0.01 * (xr - xl)
        double xmax = xr + 0.01 * (xr - xl);

        //xmin <- xl - 0.01 * (xr - xl)
        double xmin = xl - 0.01 * (xr - xl);

        //dx <- (xr - xl) / ndx
        double dx = (xmax - xmin) / Controls.INTER;

        //if (quantiles) # if true use splineDesign
        if (Controls.QUANTILES) {
            //knots <-  sort(c(seq(xl-deg*dx, xl, dx),quantile(x, 
            //prob=seq(0, 1, length=ndx)), seq(xr, xr+deg*dx, dx))) 
            ArrayRealVector kts = null;

            //B <- splineDesign(knots, x = x, outer.ok = TRUE, ord=deg+1)
            //return(B)  
            return null;
        } else {

            //kts <-   seq(xl - deg * dx, xr + deg * dx, by = dx)
            //ArrayRealVector kts = new ArrayRealVector(
            //ArithmeticSeries.getSeries(xl-deg*dx, xr+deg*dx, dx),false);

            rConnection.assingVar("min", new double[] { xmin - Controls.DEGREE * dx });
            rConnection.assingVar("max", new double[] { xmax + Controls.DEGREE * dx });
            rConnection.assingVar("step", new double[] { dx });

            ArrayRealVector kts = new ArrayRealVector(
                    rConnection.runEvalDoubles("knots <- seq(min, max, by = step)"));

            //P <- outer(x, kts, FUN = tpower, deg)
            BlockRealMatrix pM = MatrixFunctions.outertpowerPB(colValues, kts, Controls.DEGREE);

            //D <- diff(diag(dim(P)[2]), 
            //diff = deg + 1) / (gamma(deg + 1) * dx ^ deg)
            BlockRealMatrix tempM = MatrixFunctions
                    .diff(MatrixFunctions.buildIdentityMatrix(pM.getColumnDimension()), Controls.DEGREE + 1);

            double[][] tempArrArr = new double[tempM.getRowDimension()][tempM.getColumnDimension()];
            for (int i = 0; i < tempArrArr.length; i++) {
                for (int j = 0; j < tempArrArr[i].length; j++) {
                    tempArrArr[i][j] = tempM.getEntry(i, j) / ((FastMath.exp(Gamma.logGamma(Controls.DEGREE + 1)))
                            * FastMath.pow(dx, Controls.DEGREE));
                }
            }
            tempM = new BlockRealMatrix(tempArrArr);

            //B <- (-1) ^ (deg + 1) * P %*% t(D)
            return (BlockRealMatrix) pM.multiply(tempM.transpose())
                    .scalarMultiply(FastMath.pow(-1, (Controls.DEGREE + 1)));
        }
    }

    /**
     * Constructs the penalty matrix.
     * @param xM - base matrix
     * @return penalty matrix
     */
    private BlockRealMatrix formD(final BlockRealMatrix xM) {
        tempArr = new double[xM.getColumnDimension()];
        for (int i = 0; i < tempArr.length; i++) {
            tempArr[i] = 1.0;
        }
        if (Controls.ORDER == 0) {
            return new BlockRealMatrix(MatrixUtils.createRealDiagonalMatrix(tempArr).getData());
        } else {
            return MatrixFunctions.diff(
                    new BlockRealMatrix(MatrixUtils.createRealDiagonalMatrix(tempArr).getData()), Controls.ORDER);
        }
    }

    /**
     * Get a set (for all distr parameters) of lambdas.
     * @return set of lambdas
     */
    public final Hashtable<Integer, Double> getLambdas() {
        return lambdas;
    }

    /**
     * 
     * @param lambda - single smoothing parameterer 
     * attributes to the currently fitting distribution
     *  parameter.
     */
    public final void setLambda(final double lambda) {
        lambdas.put(whichDistParameter, lambda);
    }

    /**
     * Get degree of freedom values for each column of smoother 
     * matrix of each distribution parameter.
     * @return - set of degree of freedom values
     */
    public final HashMap<Integer, Object> getDfValuesSet() {
        return dfValuesSet;
    }

    /**
     * Get a penalty matrix for each column of smoother 
     * matrix of each distribution parameter.
     * @return penalty matrix
     */
    public final Hashtable<Integer, Object> getPenaltyMatricesSet() {
        return penaltyMatricesSet;
    }

    /**
     * Get a base matrix for each column of smoother 
     * matrix of each distribution parameter.
     * @return base matrix
     */
    public final Hashtable<Integer, Object> getBaseMatricesSet() {
        return baseMatricesSet;
    }

    /**
     * Get a set of initially suppplied smoother matrices.
     * @return set of initially suppplied smoother matrices
     */
    public final HashMap<Integer, BlockRealMatrix> getSmootherMatrices() {
        return smootherMatrices;
    }

    /**
     * Get basis matrix.
     * @return basis matrix
     */
    public final Hashtable getBasisM() {
        return (Hashtable) baseMatricesSet.get(whichDistParameter);
    }

    /**
     * Get penalty matrix.
     * @return penalty matrix
     */
    public final Hashtable getPenaltyM() {
        return (Hashtable) penaltyMatricesSet.get(whichDistParameter);
    }

    /**
     * Get degree of freedom.
     * @return degree of freedom
     */
    public final HashMap getDfValues() {
        return (HashMap) dfValuesSet.get(whichDistParameter);
    }

    /**
     * Set eighen degree of freedom.
     * @param edf - eighen degree of freedom
     */
    public final void setEdf(final double edf) {
        this.edf = edf;
    }

    /**
     * Get eighen degree of freedom.
     * @return edf
     */
    public final double getEdf() {
        return edf;
    }

    //public double getEdf() {
    //   return edf-2;
    //}

    /**
     * Get variance.
     * @return variance
     */
    public final ArrayRealVector getVar() {
        return var;
    }
}