Java tutorial
/******************************************************************************* * Copyright (c) 2011, 2012 itemis AG and others. * * All rights reserved. This program and the accompanying materials * are made available under the terms of the Eclipse Public License v1.0 * which accompanies this distribution, and is available at * http://www.eclipse.org/legal/epl-v10.html * * Contributors: * Matthias Wienand (itemis AG) - initial API and implementation * *******************************************************************************/ package examples.geometry.demos; import org.eclipse.gef4.geometry.planar.CubicCurve; import org.eclipse.gef4.geometry.planar.Line; import org.eclipse.gef4.geometry.planar.Point; import com.google.gwt.canvas.client.Canvas; import com.google.gwt.canvas.dom.client.Context2d; import com.google.gwt.event.shared.EventBus; import examples.geometry.AbstractExample; import examples.geometry.CanvasDrawer; import examples.geometry.ControllableShape; public class CubicCurveDeCasteljauExample extends AbstractExample { private double parameterValue = 0.5; public CubicCurveDeCasteljauExample(EventBus eventBus, Canvas canvas) { super(eventBus, canvas); } @Override protected ControllableShape[] createShapes(Canvas canvas, EventBus eventBus) { return new ControllableShape[] { new ControllableShape(canvas, eventBus) { { /* * These are the control points used to construct the CubicCurve * later. */ addControlPoints(new Point(100, 200), new Point(200, 100), new Point(300, 300), new Point(400, 200)); } @Override public CubicCurve getShape() { /* * Constructs the CubicCurve of the defined control points. */ return new CubicCurve(getPoints()); } @Override public void onDraw(Canvas canvas) { Context2d context = canvas.getContext2d(); /* * Draws the CubicCurve and the de Casteljau construction for * the current parameter value. */ // Construct the CubicCurve from the defined control points. CubicCurve curve = getShape(); CanvasDrawer.strokePath(curve.toPath(), context); /* * Retrieve control points to compute the linear interpolations * of the de Casteljau algorithm. */ Point[] points = getPoints(); /* * Define the colors for the intermediate lines. We have three * stages and therefore three different colors for a cubic * Bezier curve. This is the case, because the de Casteljau * algorithm reduces the number of control points in each * iteration until it reaches the actual point on the curve. */ String[] colors = new String[] { "green", "blue", "red" }; for (int ci = 0; ci < colors.length; ci++) { for (int i = 0; i < 3 - ci; i++) { context.beginPath(); context.moveTo(points[i].x, points[i].y); context.lineTo(points[i + 1].x, points[i + 1].y); context.setStrokeStyle(colors[ci]); context.stroke(); context.closePath(); // interpolate point for the next iteration points[i] = new Line(points[i], points[i + 1]).get(parameterValue); // draw point context.beginPath(); context.arc(points[i].x, points[i].y, 2, 0, 180); context.setStrokeStyle("black"); context.stroke(); context.closePath(); } } } } }; } }