elements.Vector3D.java Source code

Java tutorial

Introduction

Here is the source code for elements.Vector3D.java

Source

package elements;
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//package peasy.org.apache.commons.math.geometry;

import java.io.Serializable;

/** 
 * This class implements vectors in a three-dimensional space.
 * <p>Instance of this class are guaranteed to be immutable.</p>
 * @version $Revision: 627998 $ $Date: 2008-02-15 03:24:50 -0700 (Fri, 15 Feb 2008) $
 * @since 1.2
 */

public class Vector3D implements Serializable {

    /** First canonical vector (coordinates: 1, 0, 0). */
    public static final Vector3D plusI = new Vector3D(1, 0, 0);

    /** Opposite of the first canonical vector (coordinates: -1, 0, 0). */
    public static final Vector3D minusI = new Vector3D(-1, 0, 0);

    /** Second canonical vector (coordinates: 0, 1, 0). */
    public static final Vector3D plusJ = new Vector3D(0, 1, 0);

    /** Opposite of the second canonical vector (coordinates: 0, -1, 0). */
    public static final Vector3D minusJ = new Vector3D(0, -1, 0);

    /** Third canonical vector (coordinates: 0, 0, 1). */
    public static final Vector3D plusK = new Vector3D(0, 0, 1);

    /** Opposite of the third canonical vector (coordinates: 0, 0, -1).  */
    public static final Vector3D minusK = new Vector3D(0, 0, -1);

    /** Null vector (coordinates: 0, 0, 0). */
    public static final Vector3D zero = new Vector3D(0, 0, 0);

    /** Simple constructor.
     * Build a null vector.
     */
    public Vector3D() {
        x = 0;
        y = 0;
        z = 0;
    }

    /** Simple constructor.
     * Build a vector from its coordinates
     * @param x abscissa
     * @param y ordinate
     * @param z height
     * @see #getX()
     * @see #getY()
     * @see #getZ()
     */
    public Vector3D(double x, double y, double z) {
        this.x = x;
        this.y = y;
        this.z = z;
    }

    /** Simple constructor.
     * Build a vector from its azimuthal coordinates
     * @param alpha azimuth (&alpha;) around Z
     *              (0 is +X, &pi;/2 is +Y, &pi; is -X and 3&pi;/2 is -Y)
     * @param delta elevation (&delta;) above (XY) plane, from -&pi;/2 to +&pi;/2
     * @see #getAlpha()
     * @see #getDelta()
     */
    public Vector3D(double alpha, double delta) {
        double cosDelta = Math.cos(delta);
        this.x = Math.cos(alpha) * cosDelta;
        this.y = Math.sin(alpha) * cosDelta;
        this.z = Math.sin(delta);
    }

    /** Multiplicative constructor
     * Build a vector from another one and a scale factor. 
     * The vector built will be a * u
     * @param a scale factor
     * @param u base (unscaled) vector
     */
    public Vector3D(double a, Vector3D u) {
        this.x = a * u.x;
        this.y = a * u.y;
        this.z = a * u.z;
    }

    /** Linear constructor
     * Build a vector from two other ones and corresponding scale factors.
     * The vector built will be a1 * u1 + a2 * u2
     * @param a1 first scale factor
     * @param u1 first base (unscaled) vector
     * @param a2 second scale factor
     * @param u2 second base (unscaled) vector
     */
    public Vector3D(double a1, Vector3D u1, double a2, Vector3D u2) {
        this.x = a1 * u1.x + a2 * u2.x;
        this.y = a1 * u1.y + a2 * u2.y;
        this.z = a1 * u1.z + a2 * u2.z;
    }

    /** Linear constructor
     * Build a vector from three other ones and corresponding scale factors.
     * The vector built will be a1 * u1 + a2 * u2 + a3 * u3
     * @param a1 first scale factor
     * @param u1 first base (unscaled) vector
     * @param a2 second scale factor
     * @param u2 second base (unscaled) vector
     * @param a3 third scale factor
     * @param u3 third base (unscaled) vector
     */
    public Vector3D(double a1, Vector3D u1, double a2, Vector3D u2, double a3, Vector3D u3) {
        this.x = a1 * u1.x + a2 * u2.x + a3 * u3.x;
        this.y = a1 * u1.y + a2 * u2.y + a3 * u3.y;
        this.z = a1 * u1.z + a2 * u2.z + a3 * u3.z;
    }

    /** Linear constructor
     * Build a vector from four other ones and corresponding scale factors.
     * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4
     * @param a1 first scale factor
     * @param u1 first base (unscaled) vector
     * @param a2 second scale factor
     * @param u2 second base (unscaled) vector
     * @param a3 third scale factor
     * @param u3 third base (unscaled) vector
     * @param a4 fourth scale factor
     * @param u4 fourth base (unscaled) vector
     */
    public Vector3D(double a1, Vector3D u1, double a2, Vector3D u2, double a3, Vector3D u3, double a4,
            Vector3D u4) {
        this.x = a1 * u1.x + a2 * u2.x + a3 * u3.x + a4 * u4.x;
        this.y = a1 * u1.y + a2 * u2.y + a3 * u3.y + a4 * u4.y;
        this.z = a1 * u1.z + a2 * u2.z + a3 * u3.z + a4 * u4.z;
    }

    /** Get the abscissa of the vector.
     * @return abscissa of the vector
     * @see #Vector3D(double, double, double)
     */
    public double getX() {
        return x;
    }

    /** Get the ordinate of the vector.
     * @return ordinate of the vector
     * @see #Vector3D(double, double, double)
     */
    public double getY() {
        return y;
    }

    /** Get the height of the vector.
     * @return height of the vector
     * @see #Vector3D(double, double, double)
     */
    public double getZ() {
        return z;
    }

    /** Get the norm for the vector.
     * @return euclidian norm for the vector
     */
    //get magnitude
    public double getNorm() {
        return Math.sqrt(x * x + y * y + z * z);
    }

    /** Get the azimuth of the vector.
     * @return azimuth (&alpha;) of the vector, between -&pi; and +&pi;
     * @see #Vector3D(double, double)
     */
    public double getAlpha() {
        return Math.atan2(y, x);
    }

    /** Get the elevation of the vector.
     * @return elevation (&delta;) of the vector, between -&pi;/2 and +&pi;/2
     * @see #Vector3D(double, double)
     */
    public double getDelta() {
        return Math.asin(z / getNorm());
    }

    /** Add a vector to the instance.
     * @param v vector to add
     * @return a new vector
     */
    public Vector3D add(Vector3D v) {
        return new Vector3D(x + v.x, y + v.y, z + v.z);
    }

    public void addToThis(float x, float y, float z) {
        //  this.x+=x;
        //  this.y+=y;
        //  this.z+=z;
    }

    public Vector3D div(float n) {

        return new Vector3D(x / n, y / n, z / n);
    }

    /** Add a scaled vector to the instance.
     * @param factor scale factor to apply to v before adding it
     * @param v vector to add
     * @return a new vector
     */
    public Vector3D add(double factor, Vector3D v) {
        return new Vector3D(x + factor * v.x, y + factor * v.y, z + factor * v.z);
    }

    /** Subtract a vector from the instance.
     * @param v vector to subtract
     * @return a new vector
     */
    public Vector3D subtract(Vector3D v) {
        return new Vector3D(x - v.x, y - v.y, z - v.z);
    }

    /** Subtract a scaled vector from the instance.
     * @param factor scale factor to apply to v before subtracting it
     * @param v vector to subtract
     * @return a new vector
     */
    public Vector3D subtract(double factor, Vector3D v) {
        return new Vector3D(x - factor * v.x, y - factor * v.y, z - factor * v.z);
    }

    /** Get a normalized vector aligned with the instance.
     * @return a new normalized vector
     * @exception ArithmeticException if the norm is zero
     */
    public Vector3D normalize() {
        double s = getNorm();
        if (s == 0) {
            //  throw new ArithmeticException("cannot normalize a zero norm vector");
        }
        return scalarMultiply(1 / s);
    }

    /** Get a vector orthogonal to the instance.
     * <p>There are an infinite number of normalized vectors orthogonal
     * to the instance. This method picks up one of them almost
     * arbitrarily. It is useful when one needs to compute a reference
     * frame with one of the axes in a predefined direction. The
     * following example shows how to build a frame having the k axis
     * aligned with the known vector u :
     * <pre><code>
     *   Vector3D k = u.normalize();
     *   Vector3D i = k.orthogonal();
     *   Vector3D j = Vector3D.crossProduct(k, i);
     * </code></pre></p>
     * @return a new normalized vector orthogonal to the instance
     * @exception ArithmeticException if the norm of the instance is null
     */
    public Vector3D orthogonal() {

        double threshold = 0.1 * getNorm();
        if (threshold == 0) {
            throw new ArithmeticException("null norm");
        }

        //if ((x >= -threshold) && (x <= threshold)) {
        //    double inverse  = 1 / Math.sqrt(y * y + z * z);
        //    return new Vector3D(0, inverse * z, -inverse * y);

        // }
        // else if ((y >= -threshold) && (y <= threshold)) {
        //  double inverse  = 1 / Math.sqrt(x * x + z * z);
        //     return new Vector3D(-inverse * z, 0, inverse * x);
        //   }
        double inverse = 1 / Math.sqrt(x * x + y * y);
        return new Vector3D(inverse * y, -inverse * x, 0);

    }

    /** Compute the angular separation between two vectors.
     * <p>This method computes the angular separation between two
     * vectors using the dot product for well separated vectors and the
     * cross product for almost aligned vectors. This allow to have a
     * good accuracy in all cases, even for vectors very close to each
     * other.</p>
     * @param v1 first vector
     * @param v2 second vector
     * @return angular separation between v1 and v2
     * @exception ArithmeticException if either vector has a null norm
     */
    public static double angle(Vector3D v1, Vector3D v2) {

        double normProduct = v1.getNorm() * v2.getNorm();
        if (normProduct == 0) {
            // throw new ArithmeticException("null norm");
        }

        double dot = dotProduct(v1, v2);
        double threshold = normProduct * 0.9999;
        if ((dot < -threshold) || (dot > threshold)) {
            // the vectors are almost aligned, compute using the sine
            Vector3D v3 = crossProduct(v1, v2);
            if (dot >= 0) {
                return Math.asin(v3.getNorm() / normProduct);
            }
            return Math.PI - Math.asin(v3.getNorm() / normProduct);
        }

        // the vectors are sufficiently separated to use the cosine
        return Math.acos(dot / normProduct);

    }

    /** Get the opposite of the instance.
     * @return a new vector which is opposite to the instance
     */
    public Vector3D negate() {
        return new Vector3D(-x, -y, -z);
    }

    /** Multiply the instance by a scalar
     * @param a scalar
     * @return a new vector
     */
    public Vector3D scalarMultiply(double a) {
        return new Vector3D(a * x, a * y, a * z);
    }

    /** Compute the dot-product of two vectors.
     * @param v1 first vector
     * @param v2 second vector
     * @return the dot product v1.v2
     */
    public static double dotProduct(Vector3D v1, Vector3D v2) {
        return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
    }

    /** Compute the cross-product of two vectors.
     * @param v1 first vector
     * @param v2 second vector
     * @return the cross product v1 ^ v2 as a new Vector
     */
    public static Vector3D crossProduct(Vector3D v1, Vector3D v2) {
        return new Vector3D(v1.y * v2.z - v1.z * v2.y, v1.z * v2.x - v1.x * v2.z, v1.x * v2.y - v1.y * v2.x);
    }

    /** Abscissa. */
    private final double x;

    /** Ordinate. */
    private final double y;

    /** Height. */
    private final double z;

    /** Serializable version identifier */
    private static final long serialVersionUID = -5721105387745193385L;

}