Java tutorial
/* * Original author: Nick Shulman <nicksh .at. u.washington.edu>, * MacCoss Lab, Department of Genome Sciences, UW * * Copyright 2016 University of Washington - Seattle, WA * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package edu.washington.gs.skyline.model.quantification; import org.apache.commons.lang3.tuple.Pair; import java.util.ArrayList; import java.util.Collections; import java.util.List; import java.util.Map; import java.util.stream.Collectors; import java.util.stream.IntStream; public class GroupComparisonDataSet { private NormalizationMethod normalizationMethod = NormalizationMethod.NONE; private List<Replicate> replicates = new ArrayList<>(); public Replicate addReplicate(boolean control, Object bioReplicate) { Replicate replicate = new Replicate(control, bioReplicate); replicates.add(replicate); return replicate; } public NormalizationMethod getNormalizationMethod() { return normalizationMethod; } public void setNormalizationMethod(NormalizationMethod normalizationMethod) { if (normalizationMethod != null) { this.normalizationMethod = normalizationMethod; } } public LinearFitResult calculateFoldChange(String label) { List<Replicate> replicates = removeIncompleteReplicates(label, this.replicates); if (replicates.size() == 0) { return null; } List<Replicate> summarizedRows; if (replicates.stream().anyMatch(row -> null != row.getBioReplicate())) { Map<Pair<Boolean, Object>, List<Replicate>> groupedByBioReplicate = replicates.stream().collect( Collectors.groupingBy(replicate -> Pair.of(replicate.isControl(), replicate.bioReplicate))); summarizedRows = new ArrayList<>(); for (Map.Entry<Pair<Boolean, Object>, List<Replicate>> entry : groupedByBioReplicate.entrySet()) { Double log2Abundance = calculateMean(entry.getValue().stream() .map(replicateData -> replicateData.getLog2Abundance(label)).collect(Collectors.toList())); if (log2Abundance == null) { continue; } Replicate combinedReplicate = new Replicate(entry.getKey().getLeft(), entry.getKey().getValue()); ResultFileData resultFileData = combinedReplicate.ensureResultFileData(); resultFileData.setTransitionAreas(label, TransitionAreas.fromMap(Collections.singletonMap("", Math.pow(2.0, log2Abundance)))); if (getNormalizationMethod() instanceof NormalizationMethod.RatioToLabel) { TransitionAreas denominator = TransitionAreas.fromMap(Collections.singletonMap("", 1.0)); resultFileData.setTransitionAreas( ((NormalizationMethod.RatioToLabel) getNormalizationMethod()).getIsotopeLabelTypeName(), denominator); } summarizedRows.add(combinedReplicate); } } else { summarizedRows = replicates; } List<Double> abundances = summarizedRows.stream() .map(replicateData -> replicateData.getLog2Abundance(label)).collect(Collectors.toList()); List<Integer> features = Collections.nCopies(summarizedRows.size(), 0); List<Integer> runs = IntStream.range(0, summarizedRows.size()).boxed().collect(Collectors.toList()); List<Integer> subjects = IntStream.range(0, summarizedRows.size()).boxed().collect(Collectors.toList()); List<Boolean> subjectControls = summarizedRows.stream().map(Replicate::isControl) .collect(Collectors.toList()); FoldChangeDataSet foldChangeDataSet = new FoldChangeDataSet(abundances, features, runs, subjects, subjectControls); DesignMatrix designMatrix = DesignMatrix.getDesignMatrix(foldChangeDataSet, false); LinearFitResult linearFitResult = designMatrix.performLinearFit().get(0); return linearFitResult; } List<Replicate> removeIncompleteReplicates(String label, List<Replicate> replicates) { TransitionKeys requiredTransitions = null; if (!(getNormalizationMethod() instanceof NormalizationMethod.RatioToLabel)) { requiredTransitions = TransitionKeys.EMPTY; for (Replicate replicate : replicates) { TransitionAreas transitionAreas = replicate.getTransitionAreas(label); if (transitionAreas != null) { requiredTransitions = requiredTransitions.union(transitionAreas.getKeys()); } } } List<Replicate> completeReplicates = new ArrayList<>(); for (Replicate replicateData : replicates) { TransitionAreas transitionAreas = replicateData.getTransitionAreas(label); if (transitionAreas == null || transitionAreas.getKeys().size() == 0) { continue; } if (requiredTransitions != null && !transitionAreas.getKeys().containsAll(requiredTransitions)) { continue; } if (null == replicateData.getNormalizedArea(getNormalizationMethod(), label, requiredTransitions)) { continue; } completeReplicates.add(replicateData); } return completeReplicates; } private Double calculateMean(Iterable<Double> values) { int count = 0; double sum = 0; for (Double value : values) { if (value == null) { continue; } sum += value; count++; } if (count == 0) { return null; } return sum / count; } public class Replicate extends ReplicateData { private boolean control; private Object bioReplicate; public Replicate(boolean control, Object bioReplicate) { this.control = control; this.bioReplicate = bioReplicate; } public boolean isControl() { return control; } public Object getBioReplicate() { return bioReplicate; } public Double getLog2Abundance(String label) { Double normalizedIntensity = getNormalizedArea(getNormalizationMethod(), label, null); if (null == normalizedIntensity) { return null; } return log2(normalizedIntensity); } @Override public String toString() { return "Replicate{" + "control=" + control + ", bioReplicate=" + bioReplicate + ", super=" + super.toString() + '}'; } } protected double log2(double value) { return Math.log(value) / Math.log(2.0); } @Override public String toString() { return "GroupComparisonDataSet{" + "normalizationMethod=" + normalizationMethod + ", replicates=" + replicates + '}'; } }