Java tutorial
/* * TacTex - a power trading agent that competed in the Power Trading Agent Competition (Power TAC) www.powertac.org * Copyright (c) 2013-2016 Daniel Urieli and Peter Stone {urieli,pstone}@cs.utexas.edu * * * This file is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package edu.utexas.cs.tactex.tariffoptimization; import java.util.Arrays; import java.util.TreeMap; import org.apache.commons.math3.analysis.MultivariateFunction; import org.apache.commons.math3.optim.InitialGuess; import org.apache.commons.math3.optim.MaxEval; import org.apache.commons.math3.optim.PointValuePair; import org.apache.commons.math3.optim.nonlinear.scalar.GoalType; import org.apache.commons.math3.optim.nonlinear.scalar.ObjectiveFunction; import org.apache.commons.math3.optim.nonlinear.scalar.noderiv.NelderMeadSimplex; import org.apache.commons.math3.optim.nonlinear.scalar.noderiv.SimplexOptimizer; import org.powertac.common.TariffSpecification; import edu.utexas.cs.tactex.interfaces.OptimizerWrapper; import edu.utexas.cs.tactex.interfaces.TariffUtilityEstimate; public class OptimizerWrapperApacheAmoeba implements OptimizerWrapper { //private static final double SIMPLEX_EDGE = 0.001; private static final double SIMPLEX_EDGE = 0.01; @Override public TreeMap<Double, TariffSpecification> findOptimum(TariffUtilityEstimate tariffUtilityEstimate, int NUM_RATES, int numEval) { double[] startingVertex = new double[NUM_RATES]; // start from the fixed-rate tariff's offset //Arrays.fill(startingVertex, -0.5 * SIMPLEX_EDGE); //Arrays.fill(startingVertex, -1 * SIMPLEX_EDGE); // TODO if there are convergence issues, change these guessed thresholds //SimplexOptimizer optimizer = new SimplexOptimizer(1e-10, 1e-30); //SimplexOptimizer optimizer = new SimplexOptimizer(1e-4, 1e-4); //SimplexOptimizer optimizer = new SimplexOptimizer(1e-2, 10); SimplexOptimizer optimizer = new SimplexOptimizer(1e-3, 5); //SimplexOptimizer optimizer = new SimplexOptimizer(1e-2, 5); final PointValuePair optimum = optimizer.optimize(new MaxEval(numEval), new ObjectiveFunction(new OptimizerWrapperApacheObjective(tariffUtilityEstimate)), GoalType.MAXIMIZE, new InitialGuess(startingVertex), //new NelderMeadSimplex(NUM_RATES, -1 * SIMPLEX_EDGE)); new NelderMeadSimplex(NUM_RATES, SIMPLEX_EDGE));// should be positive since this reflects decrease in (negative) charges TreeMap<Double, TariffSpecification> eval2TOUTariff = new TreeMap<Double, TariffSpecification>(); eval2TOUTariff.put(optimum.getValue(), tariffUtilityEstimate.getCorrespondingSpec(optimum.getKey())); return eval2TOUTariff; } }