edu.umd.gorden2.PairsPMI.java Source code

Java tutorial

Introduction

Here is the source code for edu.umd.gorden2.PairsPMI.java

Source

/*
 * Cloud9: A Hadoop toolkit for working with big data
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you
 * may not use this file except in compliance with the License. You may
 * obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied. See the License for the specific language governing
 * permissions and limitations under the License.
 */

package edu.umd.gorden2;

import java.io.IOException;
import java.util.*;
import java.io.*;
import java.net.URI;

import org.apache.commons.io.FileUtils;
import org.apache.commons.io.IOUtils;
import org.apache.commons.cli.CommandLine;
import org.apache.commons.cli.CommandLineParser;
import org.apache.commons.cli.GnuParser;
import org.apache.commons.cli.HelpFormatter;
import org.apache.commons.cli.OptionBuilder;
import org.apache.commons.cli.Options;
import org.apache.commons.cli.ParseException;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.log4j.Logger;

import tl.lin.data.pair.PairOfStrings;

/**
 * <p>
 * Implementation of the "pairs" algorithm for computing co-occurrence matrices from a large text
 * collection. This algorithm is described in Chapter 3 of "Data-Intensive Text Processing with 
 * MapReduce" by Lin &amp; Dyer, as well as the following paper:
 * </p>
 *
 * <blockquote>Jimmy Lin. <b>Scalable Language Processing Algorithms for the Masses: A Case Study in
 * Computing Word Co-occurrence Matrices with MapReduce.</b> <i>Proceedings of the 2008 Conference
 * on Empirical Methods in Natural Language Processing (EMNLP 2008)</i>, pages 419-428.</blockquote>
 *
 * @author Jimmy Lin
 */
public class PairsPMI extends Configured implements Tool {
    private static final Logger LOG = Logger.getLogger(PairsPMI.class);

    private static class MyMapper extends Mapper<LongWritable, Text, PairOfStrings, DoubleWritable> {
        private static final PairOfStrings PAIR = new PairOfStrings();
        private static final DoubleWritable ONE = new DoubleWritable(1.0d);

        @Override
        public void map(LongWritable key, Text line, Context context) throws IOException, InterruptedException {
            String text = line.toString();
            String[] s = text.trim().split("\\s+");

            // eliminate the dup words
            Set<String> ss = new HashSet<String>(Arrays.asList(s));
            String[] terms = ss.toArray(new String[ss.size()]);

            for (int i = 0; i < terms.length; i++) {
                String term = terms[i];

                // skip empty tokens
                if (term.length() == 0)
                    continue;

                for (int j = 0; j < terms.length; j++) {
                    if (i != j) {
                        PAIR.set(term, terms[j]);
                        context.write(PAIR, ONE);
                    }
                }

            }
        }
    }

    // WordCount Mapper
    private static class MyMapper2 extends Mapper<LongWritable, Text, Text, IntWritable> {

        // Reuse objects to save overhead of object creation.
        private final static IntWritable ONE = new IntWritable(1);
        private final static Text WORD = new Text();

        @Override
        public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            String line = ((Text) value).toString();
            String[] s = line.trim().split("\\s+");

            // eliminate the dup words
            Set<String> ss = new HashSet<String>(Arrays.asList(s));
            String[] terms = ss.toArray(new String[ss.size()]);
            // number of Lines
            WORD.set("*");
            context.write(WORD, ONE);

            for (int i = 0; i < terms.length; i++) {
                String term = terms[i];
                if (term.length() == 0)
                    continue;
                WORD.set(term);
                context.write(WORD, ONE);
            }

        }
    }

    // WordCount Reducer
    private static class MyReducer2 extends Reducer<Text, IntWritable, Text, IntWritable> {

        // Reuse objects.
        private final static IntWritable SUM = new IntWritable();

        @Override
        public void reduce(Text key, Iterable<IntWritable> values, Context context)
                throws IOException, InterruptedException {
            // Sum up values.
            Iterator<IntWritable> iter = values.iterator();
            int sum = 0;
            while (iter.hasNext()) {
                sum += iter.next().get();
            }
            SUM.set(sum);
            context.write(key, SUM);
        }
    }

    // Pair Combiner
    private static class MyCombiner extends Reducer<PairOfStrings, DoubleWritable, PairOfStrings, DoubleWritable> {
        private final static DoubleWritable SUM = new DoubleWritable();

        @Override
        public void reduce(PairOfStrings key, Iterable<DoubleWritable> values, Context context)
                throws IOException, InterruptedException {
            Iterator<DoubleWritable> iter = values.iterator();
            double sum = 0.0d;
            while (iter.hasNext()) {
                sum += iter.next().get();
            }
            SUM.set(sum);
            context.write(key, SUM);

        }
    }

    // Pair Reducer
    private static class MyReducer extends Reducer<PairOfStrings, DoubleWritable, PairOfStrings, DoubleWritable> {
        private final static DoubleWritable PMI = new DoubleWritable();
        HashMap<String, Double> sidemap = new HashMap<String, Double>();

        @Override
        protected void setup(Context context) throws IOException, InterruptedException {
            if (context.getCacheFiles() != null && context.getCacheFiles().length > 0) {
                URI mappingFileUri = context.getCacheFiles()[0];
                if (mappingFileUri != null) {
                    String side_file = FileUtils.readFileToString(new File("./part-r-00000"));
                    String[] token = side_file.split("\\s+");

                    for (int i = 0; i <= token.length - 2; i += 2) {
                        sidemap.put(token[i], Double.parseDouble(token[i + 1]));
                    }
                } else {
                    System.out.println(">>>>>> NO MAPPING FILE");
                }
            } else {
                System.out.println(">>>>>> NO CACHE FILES AT ALL");
            }
        }

        @Override
        public void reduce(PairOfStrings key, Iterable<DoubleWritable> values, Context context)
                throws IOException, InterruptedException {
            Iterator<DoubleWritable> iter = values.iterator();
            double sum = 0.0d;
            while (iter.hasNext()) {
                sum += iter.next().get();
            }

            Double pmix = sidemap.get(key.getLeftElement());
            Double pmiy = sidemap.get(key.getRightElement());
            Double count = sidemap.get("*");
            Double pmixy = sum;
            if (pmixy >= 10) {
                Double pmi = pmixy * count / (pmix * pmiy);
                Double logpmi = Math.log10(pmi);
                PMI.set(logpmi);
                context.write(key, PMI);
            }
        }
    }

    // Currently useless
    protected static class MyPartitioner extends Partitioner<PairOfStrings, DoubleWritable> {
        @Override
        public int getPartition(PairOfStrings key, DoubleWritable value, int numReduceTasks) {
            return (key.getLeftElement().hashCode() & Integer.MAX_VALUE) % numReduceTasks;
        }
    }

    /**
     * Creates an instance of this tool.
     */
    public PairsPMI() {
    }

    private static final String INPUT = "input";
    private static final String OUTPUT = "output";
    private static final String NUM_REDUCERS = "numReducers";

    /**
     * Runs this tool.
     */
    @SuppressWarnings({ "static-access" })
    public int run(String[] args) throws Exception {
        Options options = new Options();

        options.addOption(OptionBuilder.withArgName("path").hasArg().withDescription("input path").create(INPUT));
        options.addOption(OptionBuilder.withArgName("path").hasArg().withDescription("output path").create(OUTPUT));
        options.addOption(OptionBuilder.withArgName("num").hasArg().withDescription("number of reducers")
                .create(NUM_REDUCERS));

        CommandLine cmdline;
        CommandLineParser parser = new GnuParser();

        try {
            cmdline = parser.parse(options, args);
        } catch (ParseException exp) {
            System.err.println("Error parsing command line: " + exp.getMessage());
            return -1;
        }

        if (!cmdline.hasOption(INPUT) || !cmdline.hasOption(OUTPUT)) {
            System.out.println("args: " + Arrays.toString(args));
            HelpFormatter formatter = new HelpFormatter();
            formatter.setWidth(120);
            formatter.printHelp(this.getClass().getName(), options);
            ToolRunner.printGenericCommandUsage(System.out);
            return -1;
        }

        String inputPath = cmdline.getOptionValue(INPUT);
        String outputPath = cmdline.getOptionValue(OUTPUT);
        int reduceTasks = cmdline.hasOption(NUM_REDUCERS) ? Integer.parseInt(cmdline.getOptionValue(NUM_REDUCERS))
                : 1;

        LOG.info("Tool: " + PairsPMI.class.getSimpleName());
        LOG.info(" - input path: " + inputPath);
        LOG.info(" - output path: " + outputPath);
        LOG.info(" - number of reducers: " + reduceTasks);

        //
        // Pair job
        Job job = Job.getInstance(getConf());
        job.setJobName(PairsPMI.class.getSimpleName());
        job.setJarByClass(PairsPMI.class);

        // Delete the output directory if it exists already.
        Path outputDir = new Path(outputPath);
        FileSystem.get(getConf()).delete(outputDir, true);

        job.setNumReduceTasks(reduceTasks);

        FileInputFormat.setInputPaths(job, new Path(inputPath));
        FileOutputFormat.setOutputPath(job, new Path(outputPath));

        job.setMapOutputKeyClass(PairOfStrings.class);
        job.setMapOutputValueClass(DoubleWritable.class);
        job.setOutputKeyClass(PairOfStrings.class);
        job.setOutputValueClass(DoubleWritable.class);

        job.setMapperClass(MyMapper.class);
        job.setCombinerClass(MyCombiner.class);
        job.setReducerClass(MyReducer.class);
        //job.setPartitionerClass(MyPartitioner.class);

        job.addCacheFile(new URI("wc/part-r-00000"));

        long startTime = System.currentTimeMillis();

        //
        // wordcount job
        Job job2 = Job.getInstance(getConf());
        job2.setJobName("Wordcount");
        job2.setJarByClass(PairsPMI.class);
        String outputPath2 = "wc";

        // Delete the output directory if it exists already.
        Path outputDir2 = new Path(outputPath2);
        FileSystem.get(getConf()).delete(outputDir2, true);

        job2.setNumReduceTasks(1);

        FileInputFormat.setInputPaths(job2, new Path(inputPath));
        FileOutputFormat.setOutputPath(job2, new Path(outputPath2));

        job2.setMapOutputKeyClass(Text.class);
        job2.setMapOutputValueClass(IntWritable.class);
        job2.setOutputKeyClass(Text.class);
        job2.setOutputValueClass(IntWritable.class);

        job2.setMapperClass(MyMapper2.class);
        job2.setCombinerClass(MyReducer2.class);
        job2.setReducerClass(MyReducer2.class);

        // add side file to job1
        job.addCacheFile(new URI("wc/part-r-00000"));

        job2.waitForCompletion(true);
        job.waitForCompletion(true);
        System.out.println("Job Finished in " + (System.currentTimeMillis() - startTime) / 1000.0 + " seconds");

        return 0;
    }

    /**
     * Dispatches command-line arguments to the tool via the {@code ToolRunner}.
     */
    public static void main(String[] args) throws Exception {
        ToolRunner.run(new PairsPMI(), args);
    }
}