Java tutorial
/* * Copyright (c) 2003, the JUNG Project and the Regents of the University of * California All rights reserved. * * This software is open-source under the BSD license; see either "license.txt" * or http://jung.sourceforge.net/license.txt for a description. */ /* * Created on Jul 2, 2003 * */ package edu.uci.ics.jung.algorithms.generators.random; import java.util.Map; import java.util.Set; import org.apache.commons.collections15.Factory; import edu.uci.ics.jung.graph.Graph; import edu.uci.ics.jung.graph.util.EdgeType; /** * * Generates a mixed-mode random graph based on the output of <code>BarabasiAlbertGenerator</code>. * Primarily intended for providing a heterogeneous sample graph for visualization testing, etc. * */ public class MixedRandomGraphGenerator { /** * Equivalent to <code>generateMixedRandomGraph(edge_weight, num_vertices, true)</code>. */ public static <V, E> Graph<V, E> generateMixedRandomGraph(Factory<Graph<V, E>> graphFactory, Factory<V> vertexFactory, Factory<E> edgeFactory, Map<E, Number> edge_weight, int num_vertices, Set<V> seedVertices) { return generateMixedRandomGraph(graphFactory, vertexFactory, edgeFactory, edge_weight, num_vertices, true, seedVertices); } /** * Returns a random mixed-mode graph. Starts with a randomly generated * Barabasi-Albert (preferential attachment) generator * (4 initial vertices, 3 edges added at each step, and num_vertices - 4 evolution steps). * Then takes the resultant graph, replaces random undirected edges with directed * edges, and assigns random weights to each edge. */ public static <V, E> Graph<V, E> generateMixedRandomGraph(Factory<Graph<V, E>> graphFactory, Factory<V> vertexFactory, Factory<E> edgeFactory, Map<E, Number> edge_weights, int num_vertices, boolean parallel, Set<V> seedVertices) { int seed = (int) (Math.random() * 10000); BarabasiAlbertGenerator<V, E> bag = new BarabasiAlbertGenerator<V, E>(graphFactory, vertexFactory, edgeFactory, 4, 3, //false, parallel, seed, seedVertices); bag.evolveGraph(num_vertices - 4); Graph<V, E> ug = bag.create(); // create a SparseMultigraph version of g Graph<V, E> g = graphFactory.create(); //new SparseMultigraph<V, E>(); for (V v : ug.getVertices()) { g.addVertex(v); } // randomly replace some of the edges by directed edges to // get a mixed-mode graph, add random weights for (E e : ug.getEdges()) { V v1 = ug.getEndpoints(e).getFirst(); V v2 = ug.getEndpoints(e).getSecond(); E me = edgeFactory.create(); g.addEdge(me, v1, v2, Math.random() < .5 ? EdgeType.DIRECTED : EdgeType.UNDIRECTED); edge_weights.put(me, Math.random()); } return g; } }