edu.uc.rphash.tests.kmeanspp.KMeansPlusPlus.java Source code

Java tutorial

Introduction

Here is the source code for edu.uc.rphash.tests.kmeanspp.KMeansPlusPlus.java

Source

package edu.uc.rphash.tests.kmeanspp;

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.List;
import java.util.Random;

import edu.uc.rphash.Centroid;
import edu.uc.rphash.Clusterer;
import edu.uc.rphash.Readers.RPHashObject;
import edu.uc.rphash.Readers.SimpleArrayReader;
import edu.uc.rphash.tests.StatTests;
import edu.uc.rphash.tests.generators.GenerateData;
import edu.uc.rphash.util.VectorUtil;

/**
 * Clustering algorithm based on David Arthur and Sergei Vassilvitski k-means++ algorithm.
 * @see <a href="http://en.wikipedia.org/wiki/K-means%2B%2B">K-means++ (wikipedia)</a>
 * @since 2.0
 * use {@link org.apache.commons.math3.ml.clustering.KMeansPlusPlus} instead
 */

public class KMeansPlusPlus<T extends Clusterable<T>> implements Clusterer {

    /** Strategies to use for replacing an empty cluster. */
    public static enum EmptyClusterStrategy {

        /** Split the cluster with largest distance variance. */
        LARGEST_VARIANCE,

        /** Split the cluster with largest number of points. */
        LARGEST_POINTS_NUMBER,

        /** Create a cluster around the point farthest from its centroid. */
        FARTHEST_POINT,

        /** Generate an error. */
        ERROR

    }

    /** Random generator for choosing initial centers. */
    private Random random;
    /** Selected strategy for empty clusters. */
    private EmptyClusterStrategy emptyStrategy;
    final int dim;

    /**
     * Runs the K-means++ clustering algorithm.
     *
     * @param points the points to cluster
     * @param k the number of clusters to split the data into
     * @param numTrials number of trial runs
     * @param maxIterationsPerTrial the maximum number of iterations to run the algorithm
     *     for at each trial run.  If negative, no maximum will be used
     * @return a list of clusters containing the points
     * @throws MathIllegalArgumentException if the data points are null or the number
     *     of clusters is larger than the number of data points
     * @throws ConvergenceException if an empty cluster is encountered and the
     * {@link #emptyStrategy} is set to {@code ERROR}
     */
    public List<Cluster<T>> cluster(final Collection<T> points, final int k, int numTrials,
            int maxIterationsPerTrial) throws Exception {

        // at first, we have not found any clusters list yet
        List<Cluster<T>> best = null;
        double bestVarianceSum = Double.POSITIVE_INFINITY;

        // do several clustering trials
        for (int i = 0; i < numTrials; ++i) {

            // compute a clusters list
            List<Cluster<T>> clusters = cluster(points, k, maxIterationsPerTrial);

            // compute the variance of the current list
            double varianceSum = 0.0;
            for (final Cluster<T> cluster : clusters) {
                if (!cluster.getPoints().isEmpty()) {

                    // compute the distance variance of the current cluster
                    final T center = cluster.getCenter();

                    double n = 0;
                    double mean = 0;
                    double M2 = 0;
                    for (final T point : cluster.getPoints()) {
                        double x = point.distanceFrom(center);
                        n++;
                        double delta = x - mean;
                        mean = mean + delta / n;
                        M2 = M2 + delta * (x - mean);
                    }
                    varianceSum += M2 / (n - 1f);

                    //                    final Variance stat = new Variance();
                    //                    for (final T point : cluster.getPoints()) {
                    //                        stat.increment(point.distanceFrom(center));
                    //                    }
                    //                    varianceSum += stat.getResult();

                }
            }

            if (varianceSum <= bestVarianceSum) {
                // this one is the best we have found so far, remember it
                best = clusters;
                bestVarianceSum = varianceSum;
            }

        }

        // return the best clusters list found
        return best;

    }

    /**
     * Runs the K-means++ clustering algorithm.
     *
     * @param points the points to cluster
     * @param k the number of clusters to split the data into
     * @param maxIterations the maximum number of iterations to run the algorithm
     *     for.  If negative, no maximum will be used
     * @return a list of clusters containing the points
     * @throws MathIllegalArgumentException if the data points are null or the number
     *     of clusters is larger than the number of data points
     * @throws ConvergenceException if an empty cluster is encountered and the
     * {@link #emptyStrategy} is set to {@code ERROR}
     */
    public List<Cluster<T>> cluster(final Collection<T> points, final int k, final int maxIterations)
            throws Exception {

        // sanity checks
        //        MathUtils.checkNotNull(points);

        // number of clusters has to be smaller or equal the number of data points
        if (points.size() < k) {
            throw new Exception();
        }

        // create the initial clusters
        List<Cluster<T>> clusters = chooseInitialCenters(points, k, random);

        // create an array containing the latest assignment of a point to a cluster
        // no need to initialize the array, as it will be filled with the first assignment
        int[] assignments = new int[points.size()];
        assignPointsToClusters(clusters, points, assignments);

        // iterate through updating the centers until we're done
        final int max = (maxIterations < 0) ? Integer.MAX_VALUE : maxIterations;
        for (int count = 0; count < max; count++) {
            boolean emptyCluster = false;
            List<Cluster<T>> newClusters = new ArrayList<Cluster<T>>();
            for (final Cluster<T> cluster : clusters) {
                final T newCenter;
                if (cluster.getPoints().isEmpty()) {
                    switch (emptyStrategy) {
                    case LARGEST_VARIANCE:
                        newCenter = getPointFromLargestVarianceCluster(clusters);
                        break;
                    case LARGEST_POINTS_NUMBER:
                        newCenter = getPointFromLargestNumberCluster(clusters);
                        break;
                    case FARTHEST_POINT:
                        newCenter = getFarthestPoint(clusters);
                        break;
                    default:
                        throw new Exception();
                    }
                    emptyCluster = true;
                } else {
                    newCenter = cluster.getCenter().centroidOf(cluster.getPoints());
                }
                newClusters.add(new Cluster<T>(newCenter));
            }
            int changes = assignPointsToClusters(newClusters, points, assignments);
            clusters = newClusters;

            // if there were no more changes in the point-to-cluster assignment
            // and there are no empty clusters left, return the current clusters
            if (changes == 0 && !emptyCluster) {
                return clusters;
            }
        }
        return clusters;
    }

    /**
     * Adds the given points to the closest {@link Cluster}.
     *
     * @param <T> type of the points to cluster
     * @param clusters the {@link Cluster}s to add the points to
     * @param points the points to add to the given {@link Cluster}s
     * @param assignments points assignments to clusters
     * @return the number of points assigned to different clusters as the iteration before
     */
    private static <T extends Clusterable<T>> int assignPointsToClusters(final List<Cluster<T>> clusters,
            final Collection<T> points, final int[] assignments) {
        int assignedDifferently = 0;
        int pointIndex = 0;
        for (final T p : points) {
            int clusterIndex = getNearestCluster(clusters, p);
            if (clusterIndex != assignments[pointIndex]) {
                assignedDifferently++;
            }

            Cluster<T> cluster = clusters.get(clusterIndex);
            cluster.addPoint(p);
            assignments[pointIndex++] = clusterIndex;
        }

        return assignedDifferently;
    }

    /**
     * Use K-means++ to choose the initial centers.
     *
     * @param <T> type of the points to cluster
     * @param points the points to choose the initial centers from
     * @param k the number of centers to choose
     * @param random random generator to use
     * @return the initial centers
     */
    private static <T extends Clusterable<T>> List<Cluster<T>> chooseInitialCenters(final Collection<T> points,
            final int k, final Random random) {

        // Convert to list for indexed access. Make it unmodifiable, since removal of items
        // would screw up the logic of this method.
        final List<T> pointList = Collections.unmodifiableList(new ArrayList<T>(points));

        // The number of points in the list.
        final int numPoints = pointList.size();

        // Set the corresponding element in this array to indicate when
        // elements of pointList are no longer available.
        final boolean[] taken = new boolean[numPoints];

        // The resulting list of initial centers.
        final List<Cluster<T>> resultSet = new ArrayList<Cluster<T>>();

        // Choose one center uniformly at random from among the data points.
        final int firstPointIndex = random.nextInt(numPoints);

        final T firstPoint = pointList.get(firstPointIndex);

        resultSet.add(new Cluster<T>(firstPoint));

        // Must mark it as taken
        taken[firstPointIndex] = true;

        // To keep track of the minimum distance squared of elements of
        // pointList to elements of resultSet.
        final double[] minDistSquared = new double[numPoints];

        // Initialize the elements.  Since the only point in resultSet is firstPoint,
        // this is very easy.
        for (int i = 0; i < numPoints; i++) {
            if (i != firstPointIndex) { // That point isn't considered
                double d = firstPoint.distanceFrom(pointList.get(i));
                minDistSquared[i] = d * d;
            }
        }

        while (resultSet.size() < k) {

            // Sum up the squared distances for the points in pointList not
            // already taken.
            double distSqSum = 0.0;

            for (int i = 0; i < numPoints; i++) {
                if (!taken[i]) {
                    distSqSum += minDistSquared[i];
                }
            }

            // Add one new data point as a center. Each point x is chosen with
            // probability proportional to D(x)2
            final double r = random.nextDouble() * distSqSum;

            // The index of the next point to be added to the resultSet.
            int nextPointIndex = -1;

            // Sum through the squared min distances again, stopping when
            // sum >= r.
            double sum = 0.0;
            for (int i = 0; i < numPoints; i++) {
                if (!taken[i]) {
                    sum += minDistSquared[i];
                    if (sum >= r) {
                        nextPointIndex = i;
                        break;
                    }
                }
            }

            // If it's not set to >= 0, the point wasn't found in the previous
            // for loop, probably because distances are extremely small.  Just pick
            // the last available point.
            if (nextPointIndex == -1) {
                for (int i = numPoints - 1; i >= 0; i--) {
                    if (!taken[i]) {
                        nextPointIndex = i;
                        break;
                    }
                }
            }

            // We found one.
            if (nextPointIndex >= 0) {

                final T p = pointList.get(nextPointIndex);

                resultSet.add(new Cluster<T>(p));

                // Mark it as taken.
                taken[nextPointIndex] = true;

                if (resultSet.size() < k) {
                    // Now update elements of minDistSquared.  We only have to compute
                    // the distance to the new center to do this.
                    for (int j = 0; j < numPoints; j++) {
                        // Only have to worry about the points still not taken.
                        if (!taken[j]) {
                            double d = p.distanceFrom(pointList.get(j));
                            double d2 = d * d;
                            if (d2 < minDistSquared[j]) {
                                minDistSquared[j] = d2;
                            }
                        }
                    }
                }

            } else {
                // None found --
                // Break from the while loop to prevent
                // an infinite loop.
                break;
            }
        }

        return resultSet;
    }

    /**
     * Get a random point from the {@link Cluster} with the largest distance variance.
     *
     * @param clusters the {@link Cluster}s to search
     * @return a random point from the selected cluster
     * @throws ConvergenceException if clusters are all empty
     */
    private T getPointFromLargestVarianceCluster(final Collection<Cluster<T>> clusters) throws Exception {

        double maxVariance = Double.NEGATIVE_INFINITY;
        Cluster<T> selected = null;
        for (final Cluster<T> cluster : clusters) {
            if (!cluster.getPoints().isEmpty()) {

                // compute the distance variance of the current cluster
                final T center = cluster.getCenter();
                //final Variance stat = new Variance();

                double n = 0;
                double mean = 0;
                double M2 = 0;

                for (final T point : cluster.getPoints()) {
                    double x = point.distanceFrom(center);
                    n++;
                    double delta = x - mean;
                    mean = mean + delta / n;
                    M2 = M2 + delta * (x - mean);
                    //stat.increment(point.distanceFrom(center));
                }
                final double variance = M2 / (n - 1f);//stat.getResult();

                // select the cluster with the largest variance
                if (variance > maxVariance) {
                    maxVariance = variance;
                    selected = cluster;
                }

            }
        }

        // did we find at least one non-empty cluster ?
        if (selected == null) {
            throw new Exception();
        }

        // extract a random point from the cluster
        final List<T> selectedPoints = selected.getPoints();
        return selectedPoints.remove(random.nextInt(selectedPoints.size()));

    }

    /**
     * Get a random point from the {@link Cluster} with the largest number of points
     *
     * @param clusters the {@link Cluster}s to search
     * @return a random point from the selected cluster
     * @throws ConvergenceException if clusters are all empty
     */
    private T getPointFromLargestNumberCluster(final Collection<Cluster<T>> clusters) throws Exception {

        int maxNumber = 0;
        Cluster<T> selected = null;
        for (final Cluster<T> cluster : clusters) {

            // get the number of points of the current cluster
            final int number = cluster.getPoints().size();

            // select the cluster with the largest number of points
            if (number > maxNumber) {
                maxNumber = number;
                selected = cluster;
            }

        }

        // did we find at least one non-empty cluster ?
        if (selected == null) {
            throw new Exception();
        }

        // extract a random point from the cluster
        final List<T> selectedPoints = selected.getPoints();
        return selectedPoints.remove(random.nextInt(selectedPoints.size()));

    }

    /**
     * Get the point farthest to its cluster center
     *
     * @param clusters the {@link Cluster}s to search
     * @return point farthest to its cluster center
     * @throws ConvergenceException if clusters are all empty
     */
    private T getFarthestPoint(final Collection<Cluster<T>> clusters) throws Exception {

        double maxDistance = Double.NEGATIVE_INFINITY;
        Cluster<T> selectedCluster = null;
        int selectedPoint = -1;
        for (final Cluster<T> cluster : clusters) {

            // get the farthest point
            final T center = cluster.getCenter();
            final List<T> points = cluster.getPoints();
            for (int i = 0; i < points.size(); ++i) {
                final double distance = points.get(i).distanceFrom(center);
                if (distance > maxDistance) {
                    maxDistance = distance;
                    selectedCluster = cluster;
                    selectedPoint = i;
                }
            }

        }

        // did we find at least one non-empty cluster ?
        if (selectedCluster == null) {
            throw new Exception();
        }

        return selectedCluster.getPoints().remove(selectedPoint);

    }

    /**
     * Returns the nearest {@link Cluster} to the given point
     *
     * @param <T> type of the points to cluster
     * @param clusters the {@link Cluster}s to search
     * @param point the point to find the nearest {@link Cluster} for
     * @return the index of the nearest {@link Cluster} to the given point
     */
    private static <T extends Clusterable<T>> int getNearestCluster(final Collection<Cluster<T>> clusters,
            final T point) {
        double minDistance = Double.MAX_VALUE;
        int clusterIndex = 0;
        int minCluster = 0;
        for (final Cluster<T> c : clusters) {
            final double distance = point.distanceFrom(c.getCenter());
            if (distance < minDistance) {
                minDistance = distance;
                minCluster = clusterIndex;
            }
            clusterIndex++;
        }
        return minCluster;
    }

    Collection<T> points;
    final int maxIterations;
    int k;
    List<float[]> centroids;//
    //    /** Build a clusterer.
    //    * <p>
    //    * The default strategy for handling empty clusters that may appear during
    //    * algorithm iterations is to split the cluster with largest distance variance.
    //    * </p>
    //    * @param random random generator to use for choosing initial centers
    //    */
    //   public KMeansPlusPlusClusterer(final Random random) {
    //       this(random, EmptyClusterStrategy.LARGEST_VARIANCE);
    //   }
    //
    //   /** Build a clusterer.
    //    * @param random random generator to use for choosing initial centers
    //    * @param emptyStrategy strategy to use for handling empty clusters that
    //    * may appear during algorithm iterations
    //    * @since 2.2
    //    */
    //   public KMeansPlusPlusClusterer(final Random random, final EmptyClusterStrategy emptyStrategy) {
    //       this.random        = random;
    //       this.emptyStrategy = emptyStrategy;
    //   }
    //     final private List<float[]> data;

    @SuppressWarnings("unchecked")
    public KMeansPlusPlus(List<float[]> data, int k) {
        random = new Random();
        emptyStrategy = EmptyClusterStrategy.LARGEST_POINTS_NUMBER;
        this.k = k;
        maxIterations = 10000;
        points = new ArrayList<>();
        //      this.data = data;
        this.dim = data.get(0).length;
        for (float[] f : data) {
            DoublePoint p = new DoublePoint(f);
            points.add((T) p);
        }

        centroids = null;
    }

    @Override
    public List<Centroid> getCentroids() {

        ArrayList<Centroid> ret = new ArrayList<>();
        List<Cluster<T>> clusters = null;
        if (centroids == null) {
            try {
                clusters = cluster(points, k, maxIterations);
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
        for (Cluster<T> c : clusters) {
            float[] retret = new float[dim];
            for (int i = 0; i < dim; i++)
                retret[i] = 0;
            for (T point : c.getPoints()) {
                double[] dpoint = ((DoublePoint) point).getPoint();
                for (int i = 0; i < dim; i++)
                    retret[i] += dpoint[i];
            }
            float sclr = 1f / ((float) c.getPoints().size() + 1);
            for (int i = 0; i < dim; i++)
                retret[i] *= sclr;
            ret.add(new Centroid(retret, 0));
        }

        return ret;
    }

    @Override
    public RPHashObject getParam() {
        return null;
    }

    public static void main(String[] args) {
        GenerateData gen = new GenerateData(3, 5000, 2, .1f);
        KMeansPlusPlus<DoublePoint> kk = new KMeansPlusPlus<>(gen.data(), 3);

        System.out.println(StatTests.WCSSECentroidsFloat(kk.getCentroids(), gen.getData()));
        System.gc();
    }

    @Override
    public void setWeights(List<Float> counts) {
    }

    @Override
    public void setK(int getk) {
        this.k = getk;
    }

    @Override
    public void setRawData(List<float[]> centroids) {
        random = new Random();
        points = new ArrayList<>();

        for (float[] f : centroids) {
            DoublePoint p = new DoublePoint(f);
            points.add((T) p);
        }

        centroids = null;
    }

    @Override
    public void setData(List<Centroid> centroids) {
        random = new Random();
        points = new ArrayList<>();

        for (Centroid f : centroids) {
            DoublePoint p = new DoublePoint(f.centroid());
            points.add((T) p);
        }

        centroids = null;

    }

    @Override
    public void reset(int randomseed) {
        random = new Random(randomseed);
        centroids = null;
    }

    @Override
    public boolean setMultiRun(int runs) {
        return false;
    }

}