Java tutorial
/* * Copyright (C) 2015 Seoul National University * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package edu.snu.dolphin.bsp.examples.ml.sub; import org.apache.mahout.math.DenseVector; import org.apache.mahout.math.Vector; import org.apache.reef.io.serialization.Codec; import javax.inject.Inject; import java.io.*; import java.util.ArrayList; import java.util.List; /** * Codec for encoding and decoding a Centroid List. */ public final class CentroidListCodec implements Codec<List<Vector>> { @Inject public CentroidListCodec() { } @Override public byte[] encode(final List<Vector> list) { /* This codec does not assume consistent centroid vector sizes(dimensions). * Therefore to specify the initial data size, * a quick iteration over the input list to compute * the sums of vector sizes is required. */ final int numClusters = list.size(); int dimension = 0; if (numClusters > 0) { dimension = list.get(0).size(); } final ByteArrayOutputStream baos = new ByteArrayOutputStream(Integer.SIZE * 2 // for dimension and the number of clusters + Double.SIZE * dimension * numClusters); try (final DataOutputStream daos = new DataOutputStream(baos)) { daos.writeInt(numClusters); daos.writeInt(dimension); for (final Vector centroid : list) { for (int i = 0; i < dimension; i++) { daos.writeDouble(centroid.get(i)); } } } catch (final IOException e) { throw new RuntimeException(e.getCause()); } return baos.toByteArray(); } @Override public List<Vector> decode(final byte[] data) { final ByteArrayInputStream bais = new ByteArrayInputStream(data); final List<Vector> list = new ArrayList<>(); int numClusters = 0; int dimension = 0; try (final DataInputStream dais = new DataInputStream(bais)) { numClusters = dais.readInt(); dimension = dais.readInt(); for (int clusterID = 0; clusterID < numClusters; clusterID++) { final Vector vector = new DenseVector(dimension); for (int i = 0; i < dimension; i++) { vector.set(i, dais.readDouble()); } list.add(vector); } } catch (final IOException e) { throw new RuntimeException(e.getCause()); } return list; } }