Java tutorial
/* * Copyright (C) 2015 Seoul National University * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package edu.snu.dolphin.bsp.examples.ml.loss; import org.apache.mahout.math.Vector; import javax.inject.Inject; /** * Represents the regularize function for logistic regression. */ public final class LogisticLoss implements Loss { @Inject public LogisticLoss() { } @Override public double loss(final double predict, final double output) { return Math.log(1 + Math.exp(-predict * output)); } @Override public Vector gradient(final Vector feature, final double predict, final double output) { // http://lingpipe-blog.com/2012/02/16/howprevent-overflow-underflow-logistic-regression/ final double exponent = -predict * output; final double maxExponent = Math.max(exponent, 0); final double logSumExp = maxExponent + Math.log(Math.exp(-maxExponent) + Math.exp(exponent - maxExponent)); return feature.times(output * (Math.exp(-logSumExp) - 1)); } }