edu.packt.neuralnet.som.Kohonen1DTest.java Source code

Java tutorial

Introduction

Here is the source code for edu.packt.neuralnet.som.Kohonen1DTest.java

Source

/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package edu.packt.neuralnet.som;

import java.awt.Color;
import java.awt.Paint;

import org.jfree.chart.ChartFrame;

import edu.packt.neuralnet.chart.Chart;
import edu.packt.neuralnet.data.NeuralDataSet;
import edu.packt.neuralnet.init.UniformInitialization;
import edu.packt.neuralnet.learn.LearningAlgorithm;
import edu.packt.neuralnet.math.RandomNumberGenerator;
import java.awt.Color;
import java.awt.Paint;
import java.util.HashSet;
import java.util.Set;
import org.jfree.chart.ChartFrame;

/**
 *
 * @author fab
 */
public class Kohonen1DTest {

    public static void main(String[] args) {

        RandomNumberGenerator.seed = 0;

        int numberOfInputs = 2;
        int numberOfNeurons = 20;
        int numberOfPoints = 1000;

        double[][] rndDataSet = RandomNumberGenerator.GenerateMatrixBetween(numberOfPoints, numberOfInputs, -100.0,
                100.0);

        for (int i = 0; i < numberOfPoints; i++) {
            rndDataSet[i][0] = i;
            rndDataSet[i][0] += RandomNumberGenerator.GenerateNext();
            rndDataSet[i][1] = Math.cos(i / 100.0) * 1000;
            rndDataSet[i][1] += RandomNumberGenerator.GenerateNext() * 400;
        }

        Kohonen kn1 = new Kohonen(numberOfInputs, numberOfNeurons, new UniformInitialization(0.0, 1000.0), 1);

        NeuralDataSet neuralDataSet = new NeuralDataSet(rndDataSet, 2);

        CompetitiveLearning complrn = new CompetitiveLearning(kn1, neuralDataSet,
                LearningAlgorithm.LearningMode.ONLINE);
        complrn.show2DData = true;
        complrn.printTraining = true;
        complrn.setLearningRate(0.3);
        complrn.setMaxEpochs(10000);
        complrn.setReferenceEpoch(3000);
        try {
            String[] seriesNames = { "Training Data" };
            Paint[] seriesColor = { Color.WHITE };

            Chart chart = new Chart("Training", rndDataSet, seriesNames, 0, seriesColor, Chart.SeriesType.DOTS);
            ChartFrame frame = new ChartFrame("Training", chart.scatterPlot("X", "Y"));
            frame.pack();
            frame.setVisible(true);

            complrn.setPlot2DFrame(frame);
            complrn.showPlot2DData();
            System.in.read();

            complrn.train();
        } catch (Exception ne) {

        }
    }

}