Java tutorial
/* LICENSE Copyright (c) 2013-2016, Jesse Hostetler (jessehostetler@gmail.com) All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** * */ package edu.oregonstate.eecs.mcplan.domains.tetris; import java.lang.reflect.Type; import java.util.ArrayList; import java.util.BitSet; import org.apache.commons.math3.random.RandomGenerator; import com.google.gson.JsonElement; import com.google.gson.JsonObject; import com.google.gson.JsonPrimitive; import com.google.gson.JsonSerializationContext; import com.google.gson.JsonSerializer; import edu.oregonstate.eecs.mcplan.State; import edu.oregonstate.eecs.mcplan.util.Fn; import gnu.trove.iterator.TIntIterator; import gnu.trove.list.TIntList; import gnu.trove.list.array.TIntArrayList; import gnu.trove.set.TIntSet; import gnu.trove.set.hash.TIntHashSet; /** * @author jhostetler * */ public final class TetrisState implements State { public static class GsonSerializer implements JsonSerializer<TetrisState> { @Override public JsonElement serialize(final TetrisState s, final Type t, final JsonSerializationContext ctx) { final JsonObject root = new JsonObject(); root.add("t", new JsonPrimitive(s.t)); final StringBuilder sb = new StringBuilder(); sb.append(s.queued_tetro.type).append("/").append(s.queued_tetro.rotation); root.add("n", new JsonPrimitive(sb.toString())); root.add("c", new JsonPrimitive(Fn.toDigits(s.cells, 5))); return root; } } // ----------------------------------------------------------------------- public final TetrisParameters params; /** * Row-major order, bottom-up. Encoding: 0 means empty, > 0 means not empty, cells * with the same non-zero number are part of the same connected component. */ private final BitSet cells; public int t = 0; public double r = 0.0; private final BitSet frozen = new BitSet(); private int Ncomponents = 0; private boolean game_over = false; public Tetromino queued_tetro = null; public TetrisState(final TetrisState that) { this(that.params); // Fn.memcpy( this.cells, that.cells ); // for( int i = 0; i < params.Nrows; ++i ) { // this.cells.get( i ).or( that.cells.get( i ) ); // } this.cells.or(that.cells); this.frozen.or(that.frozen); this.Ncomponents = that.Ncomponents; this.game_over = that.game_over; this.queued_tetro = that.queued_tetro.type.create(params); this.t = that.t; this.r = that.r; } public TetrisState(final TetrisParameters params) { this.params = params; // cells = new byte[params.Nrows][params.Ncolumns]; // cells = new ArrayList<BitSet>( params.Nrows ); // for( int i = 0; i < params.Nrows; ++i ) { // cells.set( i, new BitSet( params.Ncolumns ) ); // } cells = new BitSet(params.Nrows * params.Ncolumns); } @Override public void close() { } // private static int nfinalized = 0; // @Override // public void finalize() // { // System.out.println( "finalize(): " + (nfinalized++) + " TetrisState" ); // } public final boolean cell(final int y, final int x) { return cells.get(y * params.Ncolumns + x); } private final void clear(final int y, final int x) { cells.clear(y * params.Ncolumns + x); } private final void clearRow(final int y) { cells.clear(y * params.Ncolumns, y * params.Ncolumns + params.Nrows); } /*package*/ final void setCell(final int y, final int x) { cells.set(y * params.Ncolumns + x); } public final int Nblocks() { int sum = 0; for (int i = cells.nextSetBit(0); i >= 0; i = cells.nextSetBit(i + 1)) { sum += 1; } return sum; } public void advanceTetrominoQueue(final RandomGenerator rng) { final int t = rng.nextInt(TetrominoType.values().length); final int r = rng.nextInt(4); final Tetromino tetro = TetrominoType.values()[t].create(params); tetro.setPosition(5, params.Nrows - 1 - tetro.getBoundingBox().top); tetro.setRotation(r); queued_tetro = tetro; } public Tetromino getCurrentTetromino() { return queued_tetro; } /** * Used for tracking equivalence class relationships. */ private static class Partition { private final ArrayList<TIntSet> parts = new ArrayList<TIntSet>(); /** * Return a mapping from a cell's current value to the index of its * equivalence class. * @return */ public byte[] makeReducedMap() { int n = 0; for (final TIntSet p : parts) { n += p.size(); } final byte[] r = new byte[n]; for (int i = 0; i < parts.size(); ++i) { final TIntSet p = parts.get(i); final TIntIterator itr = p.iterator(); while (itr.hasNext()) { r[itr.next() - 1] = (byte) (i + 1); } } return r; } /** * Make i and j equivalent. Be sure to call addEquivalence( x, x ) * the first time an index x is used. * @param i * @param j */ public void addEquivalence(final int i, final int j) { int ii = -1; int jj = -1; for (int pidx = 0; pidx < parts.size(); ++pidx) { final TIntSet p = parts.get(pidx); if (p.contains(i)) { ii = pidx; } else if (p.contains(j)) { jj = pidx; } } if (ii >= 0) { if (jj >= 0) { parts.get(ii).addAll(parts.get(jj)); parts.remove(jj); } else { parts.get(ii).add(j); } } else if (jj >= 0) { parts.get(jj).add(i); } else { final TIntSet p = new TIntHashSet(); p.add(i); p.add(j); parts.add(p); } } public int nparts() { return parts.size(); } } /** * Computes connected components and freezes all components that are * touching the bottom. * <p> * The members of each component are all given the same index. Indices are * ordered first by the y-coordinate of the lowest block in the class, * then by the x-coordinate of the left-most block in the class. */ /*package*/ final void assignComponents() { byte next_comp = 1; final Partition partition = new Partition(); // Bottom row // final byte[] bottom_row = cells[0]; // final BitSet bottom_row = cells.get( 0 ); // if( bottom_row != 0 ) { // if( bottom_row.get( 0 ) ) { if (cell(0, 0)) { partition.addEquivalence(next_comp, next_comp); // bottom_row[0] = next_comp++; params.scratch[0][0] = next_comp++; } else { // NOTE: This and the similar 'else 0' clauses don't seem to be // necessary, it's difficult to tell if the algorithm is // correct without them, and I don't want to risk it. params.scratch[0][0] = 0; } for (int x = 1; x < params.Ncolumns; ++x) { // if( bottom_row[x] != 0 ) { // if( bottom_row.get( x ) ) { if (cell(0, x)) { // if( bottom_row[x-1] != 0 ) { // if( bottom_row.get( x - 1 ) ) { if (cell(0, x - 1)) { // bottom_row[x] = bottom_row[x-1]; params.scratch[0][x] = params.scratch[0][x - 1]; } else { partition.addEquivalence(next_comp, next_comp); // bottom_row[x] = next_comp++; params.scratch[0][x] = next_comp++; } } else { params.scratch[0][x] = 0; } } // System.out.println( "Row 0:" ); // System.out.println( this ); // Other rows // byte[] prev_row = bottom_row; // BitSet prev_row = bottom_row; for (int y = 1; y < params.Nrows; ++y) { // final byte[] row = cells[y]; // final BitSet row = cells.get( y ); for (int x = 0; x < params.Ncolumns; ++x) { // if( row[x] != 0 ) { // if( row.get( x ) ) { if (cell(y, x)) { boolean connected = false; // if( prev_row[x] != 0 ) { // if( prev_row.get( x ) ) { if (cell(y - 1, x)) { // Connected to block below it // row[x] = prev_row[x]; params.scratch[y][x] = params.scratch[y - 1][x]; connected = true; } // if( x > 0 && row[x-1] != 0 ) { // if( x > 0 && row.get( x - 1 ) ) { if (x > 0 && cell(y, x - 1)) { // Connected to block to the left // if( prev_row[x] != 0 && row[x-1] != prev_row[x] ) { // if( prev_row.get( x ) && params.scratch[y][x-1] != params.scratch[y-1][x] ) { if (cell(y - 1, x) && params.scratch[y][x - 1] != params.scratch[y - 1][x]) { // Different comp index indicates that left and // down are in different eq classes. Current // block joins them, so make them equivalent. // partition.addEquivalence( prev_row[x], row[x] ); partition.addEquivalence(params.scratch[y - 1][x], params.scratch[y][x]); // partition.addEquivalence( row[x-1], row[x] ); partition.addEquivalence(params.scratch[y][x - 1], params.scratch[y][x]); // System.out.println( "" + prev_row[x] + " ~= " + row[x-1] ); } else { // row[x] = row[x-1]; params.scratch[y][x] = params.scratch[y][x - 1]; } connected = true; } if (!connected) { partition.addEquivalence(next_comp, next_comp); // row[x] = next_comp++; params.scratch[y][x] = next_comp++; } } else { params.scratch[y][x] = 0; } } // prev_row = row; // System.out.println( "Row " + y + ":" ); // System.out.println( this ); } // Minimize index set size final byte[] reduced = partition.makeReducedMap(); // System.out.println( "Reduced:" ); // System.out.println( Arrays.toString( reduced ) ); // Assign minimal indices for (int y = 0; y < params.Nrows; ++y) { for (int x = 0; x < params.Ncolumns; ++x) { // if( cells[y][x] != 0 ) { // if( cells.get( y ).get( x ) ) { if (cell(y, x)) { // cells[y][x] = reduced[cells[y][x] - 1]; params.scratch[y][x] = reduced[params.scratch[y][x] - 1]; } } } // Components touching the ground don't move frozen.clear(); for (int x = 0; x < params.Ncolumns; ++x) { // if( cells[0][x] > 0 ) { // if( cells.get( 0 ).get( x ) ) { if (cell(0, x)) { // System.out.println( "Frozen: " + cells[0][x] ); // frozen.set( cells[0][x] ); frozen.set(params.scratch[0][x]); } } Ncomponents = partition.nparts(); } /** * Advance the dynamics to the instant just before the next block appears. * @return The number of lines cleared, including lines cleared by * cascading drops. */ public TIntList drop() { final TIntList counts = new TIntArrayList(); while (true) { while (step()) ; // Drop everything to the bottom // System.out.println( "\nSteps\n" ); // System.out.println( this ); final int subcount = clearCompleteRows(); // System.out.println( "\nClear\n" ); // System.out.println( this ); // System.out.println( "\tclears = " + subcount ); assignComponents(); // Reassign connected components // System.out.println( "\nAssign\n" ); // System.out.println( this ); counts.add(subcount); // Cascade drops if a row was cleared if (subcount == 0) { break; } } return counts; } /** * Clears all complete rows and returns the number of rows cleared. * @return */ private int clearCompleteRows() { int count = 0; for (int y = 0; y < params.Nrows; ++y) { // final byte[] row = cells[y]; // final BitSet row = cells.get( y ); boolean full = true; for (int x = 0; x < params.Ncolumns; ++x) { // if( row[x] == 0 ) { // if( !row.get( x ) ) { if (!cell(y, x)) { full = false; break; } } if (full) { // Fn.assign( row, (byte) 0 ); // row.clear(); clearRow(y); ++count; } } return count; } /** * Drops all free blocks one row and re-calculates frozen blocks. * @return */ private boolean step() { // System.out.println( "step()" ); // System.out.println( this ); // byte[] prev_row = cells[0]; // BitSet prev_row = cells.get( 0 ); for (int y = 1; y < params.Nrows; ++y) { // final byte[] row = cells[y]; // final BitSet row = cells.get( y ); for (int x = 0; x < params.Ncolumns; ++x) { // if( row[x] != 0 && !frozen.get( row[x] ) ) { // if( row.get( x ) && !frozen.get( params.scratch[y][x] ) ) { if (cell(y, x) && !frozen.get(params.scratch[y][x])) { // if( prev_row[x] != 0 ) { // if( prev_row.get( x ) ) { if (cell(y - 1, x)) { System.out.println(this); System.out.println("(" + x + ", " + y + ")"); for (int i = 1; i <= Ncomponents; ++i) { System.out.println("frozen " + i + ": " + frozen.get(i)); } } // assert( prev_row[x] == 0 ); // assert( !prev_row.get( x ) ); assert (!cell(y - 1, x)); // prev_row[x] = row[x]; // prev_row.set( x ); setCell(y - 1, x); params.scratch[y - 1][x] = params.scratch[y][x]; // row[x] = 0; // row.clear( x ); clear(y, x); params.scratch[y][x] = 0; } } // prev_row = row; } // prev_row = cells[0]; // for( int x = 0; x < Ncolumns; ++x ) { // if( prev_row[x] != 0 ) { // frozen.set( prev_row[x] ); // } // } // for( int y = 1; y < Nrows; ++y ) { // final byte[] row = cells[y]; // for( int x = 0; x < Ncolumns; ++x ) { // if( prev_row[x] != 0 && prev_row[x] != row[x] ) { // frozen.set( row[x] ); // } // } // prev_row = row; // } refreshFrozen(); // for( int y = params.Nrows - 1; y >= 0; --y ) { // System.out.println( "\n" + Arrays.toString( params.scratch[y] ) ); // } boolean done = true; for (int i = 1; i <= Ncomponents; ++i) { // System.out.println( "frozen( " + i + " ): " + frozen.get( i ) ); done = done && frozen.get(i); } return !done; } /*package*/ final void refreshFrozen() { frozen.clear(); // byte[] prev_row = cells[0]; // BitSet prev_row = cells.get( 0 ); // Cells touching the bottom are frozen for (int x = 0; x < params.Ncolumns; ++x) { // if( prev_row[x] != 0 ) { // if( prev_row.get( x ) ) { if (cell(0, x)) { // frozen.set( prev_row[x] ); frozen.set(params.scratch[0][x]); } } for (int y = 1; y < params.Nrows; ++y) { // final byte[] row = cells[y]; // final BitSet row = cells.get( y ); for (int x = 0; x < params.Ncolumns; ++x) { // if( prev_row[x] != 0 && prev_row[x] != row[x] ) { // if( prev_row.get( x ) && params.scratch[y-1][x] != params.scratch[y][x] ) { // A member of A is frozen if it is on top of a member of // B and B is frozen. if (cell(y - 1, x) && params.scratch[y - 1][x] != params.scratch[y][x]) { // frozen.set( row[x] ); frozen.set(params.scratch[y][x]); } } // prev_row = row; } } @Override public boolean isTerminal() { return game_over || t >= params.T; } @Override public String toString() { final StringBuilder sb = new StringBuilder(); sb.append("[t: ").append(t).append(", r: ").append(r).append(", next: ").append(queued_tetro.type) .append("/").append(queued_tetro.rotation).append(", cells: ["); final long[] bits = cells.toLongArray(); for (int i = 0; i < bits.length; ++i) { if (i > 0) { sb.append(","); } sb.append(Long.toHexString(bits[i])); } sb.append("]").append("]"); // sb.append( "\n" ).append( new TetrisBertsekasRepresenter( params ).encode( this ) ); // sb.append( "\n" ).append( frozen ); // sb.append( "\n" ); // for( int y = params.Nrows - 1; y >= 0; --y ) { // for( int x = 0; x < params.Ncolumns; ++x ) { //// sb.append( cells[y][x] ); //// sb.append( cells.get( y ).get( x ) ? "X" : "." ); // sb.append( cell( y, x ) ? "X" : "." ); // } // sb.append( "\n" ); // } return sb.toString(); } public void createTetromino(final Tetromino tetro) { // try { Ncomponents += 1; // System.out.println( "before setCells(): Ncomponents = " + Ncomponents ); final boolean success = tetro.setCells(this, Ncomponents); // } // catch( final TetrisGameOver ex ) { if (!success) { game_over = true; --Ncomponents; return; // System.out.println( "Game Over!" ); // System.out.println( "\tconflict (" + ex.conflict_x + ", " + ex.conflict_y + ")" ); // System.out.println( this ); } // System.out.println( "createTetromino()" ); // System.out.println( this ); refreshFrozen(); } }