Java tutorial
/* # # Copyright 2012 The Trustees of Indiana University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ----------------------------------------------------------------- # # Project: knn # File: SparseVectorFromTokenizedDoc.java # Description: # # ----------------------------------------------------------------- # */ package edu.indiana.d2i.htrc.io; import java.util.List; import org.apache.commons.cli2.CommandLine; import org.apache.commons.cli2.Group; import org.apache.commons.cli2.Option; import org.apache.commons.cli2.OptionException; import org.apache.commons.cli2.builder.ArgumentBuilder; import org.apache.commons.cli2.builder.DefaultOptionBuilder; import org.apache.commons.cli2.builder.GroupBuilder; import org.apache.commons.cli2.commandline.Parser; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.util.ToolRunner; import org.apache.lucene.analysis.Analyzer; import org.apache.mahout.common.AbstractJob; import org.apache.mahout.common.ClassUtils; import org.apache.mahout.common.CommandLineUtil; import org.apache.mahout.common.HadoopUtil; import org.apache.mahout.common.Pair; import org.apache.mahout.common.commandline.DefaultOptionCreator; import org.apache.mahout.math.hadoop.stats.BasicStats; import org.apache.mahout.vectorizer.DefaultAnalyzer; import org.apache.mahout.vectorizer.DictionaryVectorizer; import org.apache.mahout.vectorizer.DocumentProcessor; import org.apache.mahout.vectorizer.HighDFWordsPruner; import org.apache.mahout.vectorizer.collocations.llr.LLRReducer; import org.apache.mahout.vectorizer.common.PartialVectorMerger; import org.apache.mahout.vectorizer.tfidf.TFIDFConverter; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * Slightly modified version of SparseVectorsFromSequenceFiles * Input is tokenized doc */ public final class SparseVectorsFromTokenizedDoc extends AbstractJob { private static final Logger log = LoggerFactory.getLogger(SparseVectorsFromTokenizedDoc.class); public static void main(String[] args) throws Exception { ToolRunner.run(new SparseVectorsFromTokenizedDoc(), args); } @Override public int run(String[] args) throws Exception { DefaultOptionBuilder obuilder = new DefaultOptionBuilder(); ArgumentBuilder abuilder = new ArgumentBuilder(); GroupBuilder gbuilder = new GroupBuilder(); Option inputDirOpt = DefaultOptionCreator.inputOption().create(); Option outputDirOpt = DefaultOptionCreator.outputOption().create(); Option minSupportOpt = obuilder.withLongName("minSupport") .withArgument(abuilder.withName("minSupport").withMinimum(1).withMaximum(1).create()) .withDescription("(Optional) Minimum Support. Default Value: 2").withShortName("s").create(); Option analyzerNameOpt = obuilder.withLongName("analyzerName") .withArgument(abuilder.withName("analyzerName").withMinimum(1).withMaximum(1).create()) .withDescription("The class name of the analyzer").withShortName("a").create(); Option chunkSizeOpt = obuilder.withLongName("chunkSize") .withArgument(abuilder.withName("chunkSize").withMinimum(1).withMaximum(1).create()) .withDescription("The chunkSize in MegaBytes. 100-10000 MB").withShortName("chunk").create(); Option weightOpt = obuilder.withLongName("weight").withRequired(false) .withArgument(abuilder.withName("weight").withMinimum(1).withMaximum(1).create()) .withDescription("The kind of weight to use. Currently TF or TFIDF").withShortName("wt").create(); Option minDFOpt = obuilder.withLongName("minDF").withRequired(false) .withArgument(abuilder.withName("minDF").withMinimum(1).withMaximum(1).create()) .withDescription("The minimum document frequency. Default is 1").withShortName("md").create(); Option maxDFPercentOpt = obuilder.withLongName("maxDFPercent").withRequired(false) .withArgument(abuilder.withName("maxDFPercent").withMinimum(1).withMaximum(1).create()) .withDescription( "The max percentage of docs for the DF. Can be used to remove really high frequency terms." + " Expressed as an integer between 0 and 100. Default is 99. If maxDFSigma is also set, it will override this value.") .withShortName("x").create(); Option maxDFSigmaOpt = obuilder.withLongName("maxDFSigma").withRequired(false) .withArgument(abuilder.withName("maxDFSigma").withMinimum(1).withMaximum(1).create()) .withDescription( "What portion of the tf (tf-idf) vectors to be used, expressed in times the standard deviation (sigma) of the document frequencies of these vectors." + " Can be used to remove really high frequency terms." + " Expressed as a double value. Good value to be specified is 3.0. In case the value is less then 0 no vectors " + "will be filtered out. Default is -1.0. Overrides maxDFPercent") .withShortName("xs").create(); Option minLLROpt = obuilder.withLongName("minLLR").withRequired(false) .withArgument(abuilder.withName("minLLR").withMinimum(1).withMaximum(1).create()) .withDescription("(Optional)The minimum Log Likelihood Ratio(Float) Default is " + LLRReducer.DEFAULT_MIN_LLR) .withShortName("ml").create(); Option numReduceTasksOpt = obuilder.withLongName("numReducers") .withArgument(abuilder.withName("numReducers").withMinimum(1).withMaximum(1).create()) .withDescription("(Optional) Number of reduce tasks. Default Value: 1").withShortName("nr") .create(); Option powerOpt = obuilder.withLongName("norm").withRequired(false) .withArgument(abuilder.withName("norm").withMinimum(1).withMaximum(1).create()) .withDescription( "The norm to use, expressed as either a float or \"INF\" if you want to use the Infinite norm. " + "Must be greater or equal to 0. The default is not to normalize") .withShortName("n").create(); Option logNormalizeOpt = obuilder.withLongName("logNormalize").withRequired(false) .withDescription("(Optional) Whether output vectors should be logNormalize. If set true else false") .withShortName("lnorm").create(); Option maxNGramSizeOpt = obuilder.withLongName("maxNGramSize").withRequired(false) .withArgument(abuilder.withName("ngramSize").withMinimum(1).withMaximum(1).create()) .withDescription("(Optional) The maximum size of ngrams to create" + " (2 = bigrams, 3 = trigrams, etc) Default Value:1") .withShortName("ng").create(); Option sequentialAccessVectorOpt = obuilder.withLongName("sequentialAccessVector").withRequired(false) .withDescription( "(Optional) Whether output vectors should be SequentialAccessVectors. If set true else false") .withShortName("seq").create(); Option namedVectorOpt = obuilder.withLongName("namedVector").withRequired(false) .withDescription("(Optional) Whether output vectors should be NamedVectors. If set true else false") .withShortName("nv").create(); Option overwriteOutput = obuilder.withLongName("overwrite").withRequired(false) .withDescription("If set, overwrite the output directory").withShortName("ow").create(); Option helpOpt = obuilder.withLongName("help").withDescription("Print out help").withShortName("h") .create(); Group group = gbuilder.withName("Options").withOption(minSupportOpt).withOption(analyzerNameOpt) .withOption(chunkSizeOpt).withOption(outputDirOpt).withOption(inputDirOpt).withOption(minDFOpt) .withOption(maxDFSigmaOpt).withOption(maxDFPercentOpt).withOption(weightOpt).withOption(powerOpt) .withOption(minLLROpt).withOption(numReduceTasksOpt).withOption(maxNGramSizeOpt) .withOption(overwriteOutput).withOption(helpOpt).withOption(sequentialAccessVectorOpt) .withOption(namedVectorOpt).withOption(logNormalizeOpt).create(); try { Parser parser = new Parser(); parser.setGroup(group); parser.setHelpOption(helpOpt); CommandLine cmdLine = parser.parse(args); if (cmdLine.hasOption(helpOpt)) { CommandLineUtil.printHelp(group); return -1; } Path inputDir = new Path((String) cmdLine.getValue(inputDirOpt)); Path outputDir = new Path((String) cmdLine.getValue(outputDirOpt)); int chunkSize = 100; if (cmdLine.hasOption(chunkSizeOpt)) { chunkSize = Integer.parseInt((String) cmdLine.getValue(chunkSizeOpt)); } int minSupport = 2; if (cmdLine.hasOption(minSupportOpt)) { String minSupportString = (String) cmdLine.getValue(minSupportOpt); minSupport = Integer.parseInt(minSupportString); } int maxNGramSize = 1; if (cmdLine.hasOption(maxNGramSizeOpt)) { try { maxNGramSize = Integer.parseInt(cmdLine.getValue(maxNGramSizeOpt).toString()); } catch (NumberFormatException ex) { log.warn("Could not parse ngram size option"); } } log.info("Maximum n-gram size is: {}", maxNGramSize); if (cmdLine.hasOption(overwriteOutput)) { HadoopUtil.delete(getConf(), outputDir); } float minLLRValue = LLRReducer.DEFAULT_MIN_LLR; if (cmdLine.hasOption(minLLROpt)) { minLLRValue = Float.parseFloat(cmdLine.getValue(minLLROpt).toString()); } log.info("Minimum LLR value: {}", minLLRValue); int reduceTasks = 1; if (cmdLine.hasOption(numReduceTasksOpt)) { reduceTasks = Integer.parseInt(cmdLine.getValue(numReduceTasksOpt).toString()); } log.info("Number of reduce tasks: {}", reduceTasks); Class<? extends Analyzer> analyzerClass = DefaultAnalyzer.class; if (cmdLine.hasOption(analyzerNameOpt)) { String className = cmdLine.getValue(analyzerNameOpt).toString(); analyzerClass = Class.forName(className).asSubclass(Analyzer.class); // try instantiating it, b/c there isn't any point in setting it // if // you can't instantiate it ClassUtils.instantiateAs(analyzerClass, Analyzer.class); } boolean processIdf; if (cmdLine.hasOption(weightOpt)) { String wString = cmdLine.getValue(weightOpt).toString(); if ("tf".equalsIgnoreCase(wString)) { processIdf = false; } else if ("tfidf".equalsIgnoreCase(wString)) { processIdf = true; } else { throw new OptionException(weightOpt); } } else { processIdf = true; } int minDf = 1; if (cmdLine.hasOption(minDFOpt)) { minDf = Integer.parseInt(cmdLine.getValue(minDFOpt).toString()); } int maxDFPercent = 99; if (cmdLine.hasOption(maxDFPercentOpt)) { maxDFPercent = Integer.parseInt(cmdLine.getValue(maxDFPercentOpt).toString()); } double maxDFSigma = -1.0; if (cmdLine.hasOption(maxDFSigmaOpt)) { maxDFSigma = Double.parseDouble(cmdLine.getValue(maxDFSigmaOpt).toString()); } float norm = PartialVectorMerger.NO_NORMALIZING; if (cmdLine.hasOption(powerOpt)) { String power = cmdLine.getValue(powerOpt).toString(); if ("INF".equals(power)) { norm = Float.POSITIVE_INFINITY; } else { norm = Float.parseFloat(power); } } boolean logNormalize = false; if (cmdLine.hasOption(logNormalizeOpt)) { logNormalize = true; } /* modification starts here */ Configuration conf = getConf(); // Path tokenizedPath = new Path(outputDir, // DocumentProcessor.TOKENIZED_DOCUMENT_OUTPUT_FOLDER); // DocumentProcessor.tokenizeDocuments(inputDir, analyzerClass, // tokenizedPath, conf); Path tokenizedPath = inputDir; /* end modification */ boolean sequentialAccessOutput = false; if (cmdLine.hasOption(sequentialAccessVectorOpt)) { sequentialAccessOutput = true; } boolean namedVectors = false; if (cmdLine.hasOption(namedVectorOpt)) { namedVectors = true; } boolean shouldPrune = maxDFSigma >= 0.0; String tfDirName = shouldPrune ? DictionaryVectorizer.DOCUMENT_VECTOR_OUTPUT_FOLDER + "-toprune" : DictionaryVectorizer.DOCUMENT_VECTOR_OUTPUT_FOLDER; if (!processIdf) { DictionaryVectorizer.createTermFrequencyVectors(tokenizedPath, outputDir, tfDirName, conf, minSupport, maxNGramSize, minLLRValue, norm, logNormalize, reduceTasks, chunkSize, sequentialAccessOutput, namedVectors); } else { DictionaryVectorizer.createTermFrequencyVectors(tokenizedPath, outputDir, tfDirName, conf, minSupport, maxNGramSize, minLLRValue, -1.0f, false, reduceTasks, chunkSize, sequentialAccessOutput, namedVectors); } Pair<Long[], List<Path>> docFrequenciesFeatures = null; // Should document frequency features be processed if (shouldPrune || processIdf) { docFrequenciesFeatures = TFIDFConverter.calculateDF(new Path(outputDir, tfDirName), outputDir, conf, chunkSize); } long maxDF = maxDFPercent;// if we are pruning by std dev, then this // will get changed if (shouldPrune) { Path dfDir = new Path(outputDir, TFIDFConverter.WORDCOUNT_OUTPUT_FOLDER); Path stdCalcDir = new Path(outputDir, HighDFWordsPruner.STD_CALC_DIR); // Calculate the standard deviation double stdDev = BasicStats.stdDevForGivenMean(dfDir, stdCalcDir, 0.0D, conf); maxDF = (int) (maxDFSigma * stdDev); // Prune the term frequency vectors Path tfDir = new Path(outputDir, tfDirName); Path prunedTFDir = new Path(outputDir, DictionaryVectorizer.DOCUMENT_VECTOR_OUTPUT_FOLDER); Path prunedPartialTFDir = new Path(outputDir, DictionaryVectorizer.DOCUMENT_VECTOR_OUTPUT_FOLDER + "-partial"); if (processIdf) { HighDFWordsPruner.pruneVectors(tfDir, prunedTFDir, prunedPartialTFDir, maxDF, conf, docFrequenciesFeatures, -1.0f, false, reduceTasks); } else { HighDFWordsPruner.pruneVectors(tfDir, prunedTFDir, prunedPartialTFDir, maxDF, conf, docFrequenciesFeatures, norm, logNormalize, reduceTasks); } HadoopUtil.delete(new Configuration(conf), tfDir); } if (processIdf) { TFIDFConverter.processTfIdf(new Path(outputDir, DictionaryVectorizer.DOCUMENT_VECTOR_OUTPUT_FOLDER), outputDir, conf, docFrequenciesFeatures, minDf, maxDF, norm, logNormalize, sequentialAccessOutput, namedVectors, reduceTasks); } } catch (OptionException e) { log.error("Exception", e); CommandLineUtil.printHelp(group); } return 0; } }