Java tutorial
/* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ package dfs; import java.util.Arrays; import org.apache.commons.math.linear.MatrixUtils; import org.apache.commons.math.linear.RealMatrix; import org.apache.commons.math.stat.regression.OLSMultipleLinearRegression; /** * * @author Sebastin */ public abstract class OLSTrendLine implements TrendLine { RealMatrix coef = null; // will hold prediction coefs once we get values protected abstract double[] xVector(double x); // create vector of values from x protected abstract boolean logY(); // set true to predict log of y (note: y must be positive) @Override public void setValues(double[] y, double[] x) { if (x.length != y.length) { throw new IllegalArgumentException( String.format("The numbers of y and x values must be equal (%d != %d)", y.length, x.length)); } double[][] xData = new double[x.length][]; for (int i = 0; i < x.length; i++) { // the implementation determines how to produce a vector of predictors from a single x xData[i] = xVector(x[i]); } if (logY()) { // in some models we are predicting ln y, so we replace each y with ln y y = Arrays.copyOf(y, y.length); // user might not be finished with the array we were given for (int i = 0; i < x.length; i++) { y[i] = Math.log(y[i]); } } OLSMultipleLinearRegression ols = new OLSMultipleLinearRegression(); ols.setNoIntercept(true); // let the implementation include a constant in xVector if desired ols.newSampleData(y, xData); // provide the data to the model coef = MatrixUtils.createColumnRealMatrix(ols.estimateRegressionParameters()); // get our coefs } @Override public double predict(double x) { double yhat = coef.preMultiply(xVector(x))[0]; // apply coefs to xVector if (logY()) yhat = (Math.exp(yhat)); // if we predicted ln y, we still need to get y return yhat; } }