Java tutorial
/* * Copyright (C) 2016 jcastro * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package delfos.group.results.groupevaluationmeasures; import delfos.ERROR_CODES; import delfos.common.exceptions.dataset.users.UserNotFound; import delfos.common.statisticalfuncions.MeanIterative; import delfos.dataset.basic.loader.types.DatasetLoader; import delfos.dataset.basic.rating.Rating; import delfos.dataset.basic.rating.RelevanceCriteria; import delfos.group.groupsofusers.GroupOfUsers; import delfos.group.results.grouprecomendationresults.GroupRecommenderSystemResult; import delfos.rs.recommendation.Recommendation; import java.util.Collection; import java.util.Map; import java.util.TreeMap; import org.apache.commons.math4.stat.descriptive.moment.StandardDeviation; /** * Medida de evaluacin para calcular el error absoluto medio del sistema de recomendacin evaluado. Calcula la * diferencia entre la valoracin hecha para el grupo y la valoracin individual que cada usuario di para el producto, * si lo ha valorado. * * <p> * Es una extensin de la medida de evaluacin {@link delfos.Results.EvaluationMeasures.RatingPrediction.MAE} para * recomendaciones individuales. * * @author jcastro-inf ( https://github.com/jcastro-inf ) * * @see delfos.Results.EvaluationMeasures.RatingPrediction.MAE */ public class MAE_byGroupStdDev extends GroupEvaluationMeasure { @Override public GroupEvaluationMeasureResult getMeasureResult(GroupRecommenderSystemResult groupRecommenderSystemResult, DatasetLoader<? extends Rating> originalDatasetLoader, RelevanceCriteria relevanceCriteria, DatasetLoader<? extends Rating> trainingDatasetLoader, DatasetLoader<? extends Rating> testDatasetLoader) { TreeMap<GroupOfUsers, MeanIterative> maeGroups = new TreeMap<>(); for (GroupOfUsers groupOfUsers : groupRecommenderSystemResult.getGroupsOfUsers()) { Collection<Recommendation> groupRecommendations = groupRecommenderSystemResult .getGroupOutput(groupOfUsers).getRecommendations().getRecommendations(); if (groupRecommendations.isEmpty()) { continue; } MeanIterative maeGroup = new MeanIterative(); Map<Integer, Map<Integer, ? extends Rating>> groupTrueRatings = new TreeMap<>(); groupOfUsers.getIdMembers().stream().forEach((idUser) -> { try { groupTrueRatings.put(idUser, testDatasetLoader.getRatingsDataset().getUserRatingsRated(idUser)); } catch (UserNotFound ex) { ERROR_CODES.USER_NOT_FOUND.exit(ex); } }); for (Recommendation recommendation : groupRecommendations) { if (Double.isNaN(recommendation.getPreference().doubleValue())) { continue; } int idItem = recommendation.getItem().getId(); for (int idUser : groupOfUsers.getIdMembers()) { if (groupTrueRatings.get(idUser).containsKey(idItem)) { double trueRating = groupTrueRatings.get(idUser).get(idItem).getRatingValue().doubleValue(); double predicted = recommendation.getPreference().doubleValue(); double absoluteError = Math.abs(predicted - trueRating); maeGroup.addValue(absoluteError); } } } maeGroups.put(groupOfUsers, maeGroup); } double[] maesByGroup = maeGroups.values().parallelStream().mapToDouble(maeGroup -> maeGroup.getMean()) .filter(value -> !Double.isNaN(value)).toArray(); double maeByGroupStdDev = new StandardDeviation().evaluate(maesByGroup); if (maesByGroup.length == 0) { return new GroupEvaluationMeasureResult(this, Double.NaN); } else { return new GroupEvaluationMeasureResult(this, maeByGroupStdDev); } } @Override public boolean usesRatingPrediction() { return true; } }