Java tutorial
/* * Copyright 2016 * Ubiquitous Knowledge Processing (UKP) Lab * Technische Universitt Darmstadt * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package de.tudarmstadt.ukp.experiments.argumentation.sequence.feature.morpho; import de.tudarmstadt.ukp.experiments.argumentation.sequence.feature.AbstractUnitSentenceFeatureGenerator; import de.tudarmstadt.ukp.dkpro.core.api.frequency.util.FrequencyDistribution; import de.tudarmstadt.ukp.dkpro.core.api.lexmorph.type.pos.POS; import de.tudarmstadt.ukp.dkpro.core.api.segmentation.type.Sentence; import de.tudarmstadt.ukp.dkpro.core.ngrams.util.NGramStringListIterable; import de.tudarmstadt.ukp.dkpro.tc.api.exception.TextClassificationException; import de.tudarmstadt.ukp.dkpro.tc.api.features.Feature; import de.tudarmstadt.ukp.dkpro.tc.features.ngram.util.NGramUtils; import org.apache.commons.lang.StringUtils; import org.apache.uima.fit.util.JCasUtil; import org.apache.uima.jcas.JCas; import java.util.ArrayList; import java.util.List; /** * Extract POS-n-grams for classification units. Does not treat them binary, but emits the * actual counts. * * @author Ivan Habernal */ public class POSNgram extends AbstractUnitSentenceFeatureGenerator { public static final String FEATURE_NAME = "_pos_ngram_"; @Override protected List<Feature> extract(JCas jCas, Sentence sentence, String sentencePrefix) throws TextClassificationException { List<Feature> result = new ArrayList<>(); // extract post n-grams FrequencyDistribution<String> documentPOSNGrams = getSentencePosNGrams(jCas, 1, 3, true, sentence); for (String posNGram : documentPOSNGrams.getKeys()) { // we use sparse vectors here result.add(new Feature(sentencePrefix + FEATURE_NAME + posNGram, documentPOSNGrams.getCount(posNGram))); } return result; } public static FrequencyDistribution<String> getSentencePosNGrams(JCas jcas, int minN, int maxN, boolean useCanonical, Sentence Sentence) { FrequencyDistribution<String> result = new FrequencyDistribution<>(); List<String> posTagString = new ArrayList<>(); for (POS p : JCasUtil.selectCovered(jcas, POS.class, Sentence)) { if (useCanonical) { posTagString.add(p.getClass().getSimpleName()); } else { posTagString.add(p.getPosValue()); } } String[] posAsArray = posTagString.toArray(new String[posTagString.size()]); for (List<String> nGram : new NGramStringListIterable(posAsArray, minN, maxN)) { result.inc(StringUtils.join(nGram, NGramUtils.NGRAM_GLUE)); } return result; } }