Java tutorial
/* * Copyright 2015 * Ubiquitous Knowledge Processing (UKP) Lab * Technische Universitt Darmstadt * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package de.tudarmstadt.ukp.dkpro.tc.svmhmm.random; import java.io.File; import java.io.FileWriter; import java.io.PrintWriter; import java.util.ArrayList; import java.util.List; import java.util.Random; import org.apache.commons.io.FileUtils; import org.apache.commons.io.IOUtils; import de.tudarmstadt.ukp.dkpro.lab.engine.TaskContext; import de.tudarmstadt.ukp.dkpro.lab.storage.StorageService; import de.tudarmstadt.ukp.dkpro.tc.core.ml.TCMachineLearningAdapter; import de.tudarmstadt.ukp.dkpro.tc.svmhmm.SVMHMMAdapter; import de.tudarmstadt.ukp.dkpro.tc.svmhmm.task.SVMHMMTestTask; /** * Random classifier for sequence labeling build upon SVMhmm adapter * * @author Ivan Habernal */ public class SVMHMMRandomTestTask extends SVMHMMTestTask { static Random random = new Random(System.currentTimeMillis()); @Override protected void trainModel(TaskContext taskContext, File trainingFile) throws Exception { // no training } @Override protected void testModel(TaskContext taskContext, File testFile) throws Exception { // file to hold prediction results File predictionsFile = new File( taskContext.getStorageLocation(TEST_TASK_OUTPUT_KEY, StorageService.AccessMode.READWRITE), new SVMHMMAdapter() .getFrameworkFilename(TCMachineLearningAdapter.AdapterNameEntries.predictionsFile)); // number of expected outcomes List<String> strings = FileUtils.readLines(testFile); int numberOfTestInstances = strings.size(); PrintWriter pw = new PrintWriter(new FileWriter(predictionsFile.getAbsolutePath())); for (int i = 0; i < numberOfTestInstances; i++) { pw.println(getRandomOutcome()); } IOUtils.closeQuietly(pw); } protected Integer getRandomOutcome() { List<Object> list = new ArrayList<Object>(this.labelsToIntegersMapping.values()); // random label int i = random.nextInt(list.size()); return (Integer) list.get(i); } }