Java tutorial
/******************************************************************************* * Copyright 2013 * Ubiquitous Knowledge Processing (UKP) Lab * Technische Universitt Darmstadt * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. ******************************************************************************/ package de.tudarmstadt.ukp.dkpro.bigdata.collocations; import org.apache.commons.lang.NotImplementedException; /** * Implementation of association metrics from Stefan Everts' www.collocations.de * * @author zorn * */ public class AssociationMetrics { // observed frequencies double o11; double o12; double o21; double o22; // marginals double r1; double r2; double c1; double c2; double n; // expected values double e11 = 0.0; double e12 = 0.0; double e21 = 0.0; double e22 = 0.0; // observed frequencies double O11; double O12; double O21; double O22; // marginals double R1; double R2; double C1; double C2; double N; public void init(long o11, long o12, long o21, long o22) { this.o11 = o11; this.o12 = o12; this.o21 = o21; this.o22 = o22; // calculate marginals R1 = o11 + o12; R2 = o21 + o22; C1 = o11 + o21; C2 = o12 + o22; N = R1 + R2; // pre-type convert, not sure whether this really is necessary, need to benchmark r1 = R1; r2 = R2; c1 = C1; c2 = C2; n = N; // calculate expected values; e11 = (r1 * c1) / N; e12 = (r1 * c2) / N; e21 = (r2 * c1) / N; e22 = (r2 * c2) / N; } public double pmi() { return Math.log(e11 / (e12) * (e21)) / Math.log(2); } public double chisquared() { return (N * (o11 - e11) * N * (o11 - e11)) / (e11 * e22); } public double chisquared_corr() { return ((N * (o11 * o22 - e11) * N * (o12 - o21)) - (n / 2)) / (r1 * r2 * c1 * c2); } public double mutual_information() { return Math.log(o11 / e11); } public double odds_ratio_discounted() { return ((o11 + 0.5) * (o22 + 0.5)) / ((o12 + 0.5) * (o21 + 0.5)); } public double dice() { return (2 * o11 / (r1 + c1)); } public double ms() { return Math.min(o11 / r1, o11 / c1); } public double gmean() { return o11 / Math.sqrt(N * e11); } public double local_mi() { return 0; } public double average_mi() { return 0; } // public double fisher() { // double sum=0; // for (long k=(long) o11;k<Math.max(r1,c1);k++) { // sum+=(binomial((long) c1,k)*binomial((long) c2,(long)r1-k))/binomial((long)N,(long)r1); // } // } // // // private double binomial(long n, long k) // { // // TODO Auto-generated method stub // return 0; // } }