Java tutorial
package de.tudarmstadt.tk.statistics.helper; /** * Copyright 2014 * Telecooperation (TK) Lab * Technische Universitt Darmstadt * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import java.util.ArrayList; import java.util.Collections; import java.util.Comparator; import java.util.Iterator; import org.apache.commons.lang3.tuple.Pair; import org.apache.logging.log4j.Level; import org.apache.logging.log4j.LogManager; import org.apache.logging.log4j.Logger; import de.tudarmstadt.tk.statistics.test.SampleData; /** * @author Guckelsberger, Schulz */ public class Helpers { private static final Logger logger = LogManager.getLogger("Statistics"); /** * Remove models with the worst performance measures from the sample data if * the no. of models exceeds a certain threshold. If a baseline evaluation * is performed, the baseline model is retained. If the number of models * does not exceed the specified threshold, nothing happens. * * @param sampleData * An object of type {@link StatisticalEvaluationData} * @param selectBestN * Maximum number of models * @param selectByMeasure * Measure by which to select the models * @return the truncated SampleData object */ public static SampleData truncateData(SampleData sampleData, int selectBestN, String selectByMeasure) { int nModels = sampleData.getModelMetadata().size(); // Only select a subset of the data if there're more models than the // specified maximum if (nModels > selectBestN && nModels > 1) { // Get sample averages ArrayList<Double> sampleAverages = sampleData.getSamplesAverage().get(selectByMeasure); if (sampleAverages == null) { sampleAverages = sampleData.getSamplesAverage().get("Averaged " + selectByMeasure); } if (sampleAverages == null) { logger.log(Level.ERROR, "Measure for model selection not available in sample data! No selection."); return sampleData; } // Sort them ArrayList<Pair<Integer, Double>> sortedAvgs = new ArrayList<Pair<Integer, Double>>(); for (int i = 0; i < sampleAverages.size(); i++) { sortedAvgs.add(Pair.of(i, sampleAverages.get(i))); } Collections.sort(sortedAvgs, new PairValueComparator()); ArrayList<Integer> obsolete = new ArrayList<Integer>(); for (int i = 0; i < sortedAvgs.size() - selectBestN; i++) { int toBeRemoved = sortedAvgs.get(i).getKey(); // If this is a baseline evaluation, do not remove the baseline // model if (sampleData.isBaselineEvaluation() && toBeRemoved == 0) { continue; } obsolete.add(toBeRemoved); } Collections.sort(obsolete); Collections.reverse(obsolete); // Remove obsolete samples Iterator<String> itm = sampleData.getSamplesAverage().keySet().iterator(); while (itm.hasNext()) { String measure = itm.next(); for (int i = 0; i < obsolete.size(); i++) { sampleData.getSamplesAverage().get(measure).remove((int) obsolete.get(i)); sampleData.getSamples().get(measure).remove((int) obsolete.get(i)); } } // Remove obsolete model metadata for (int i = 0; i < obsolete.size(); i++) { sampleData.getModelMetadata().remove((int) obsolete.get(i)); } } return sampleData; } public static class LexicographicArrayComparator implements Comparator<String[]> { @Override public int compare(String[] a, String[] b) { if (a[0].equals(b[0])) { return a[1].compareToIgnoreCase(b[1]); } else { return a[0].compareToIgnoreCase(b[0]); } } } static class LexicographicPairComparator implements Comparator<Pair<String, String>> { @Override public int compare(Pair<String, String> a, Pair<String, String> b) { if (a.getLeft().equals(b.getLeft())) { return a.getRight().compareToIgnoreCase(b.getRight()); } else { return a.getLeft().compareToIgnoreCase(b.getLeft()); } } } static class PairValueComparator implements Comparator<Pair<Integer, Double>> { @Override public int compare(Pair<Integer, Double> a, Pair<Integer, Double> b) { return a.getRight().compareTo(b.getRight()); } } }