de.tud.kom.p2psim.impl.util.stat.distributions.LimitedNormalDistribution.java Source code

Java tutorial

Introduction

Here is the source code for de.tud.kom.p2psim.impl.util.stat.distributions.LimitedNormalDistribution.java

Source

/*
 * Copyright (c) 2005-2011 KOM - Multimedia Communications Lab
 *
 * This file is part of PeerfactSim.KOM.
 * 
 * PeerfactSim.KOM is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * any later version.
 * 
 * PeerfactSim.KOM is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with PeerfactSim.KOM.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

package de.tud.kom.p2psim.impl.util.stat.distributions;

import org.apache.commons.math.MathException;
import org.apache.commons.math.distribution.NormalDistributionImpl;

import de.tud.kom.p2psim.impl.scenario.XMLConfigurableConstructor;
import de.tud.kom.p2psim.impl.simengine.Simulator;

/**
 *
 * @author <peerfact@kom.tu-darmstadt.de>
 * @version 05/06/2011
 *
 */
public class LimitedNormalDistribution implements Distribution {
    private NormalDistributionImpl limitedNormal;

    private double mu;

    private double sigma;

    private boolean limitedMin;

    private boolean limitedMax;

    private double min;

    private double max;

    private double pmin = 0;

    private double pmax = 1;

    // pfactor and pmin are used to determine the range in which the random
    // values are allowed.
    private double pfactor;

    private int limitType;

    private LimitedNormalConfigurer conf;

    private final static int LIMIT_NORMAL_DIST_NONE = 0;

    private final static int LIMIT_NORMAL_DIST_MIN = 1;

    private final static int LIMIT_NORMAL_DIST_MAX = 2;

    private final static int LIMIT_NORMAL_DIST_BOTH = 3;

    @XMLConfigurableConstructor({ "mu", "sigma", "min", "max", "limitedMin", "limitedMax" })
    public LimitedNormalDistribution(double mu, double sigma, double min, double max, boolean limitedMin,
            boolean limitedMax) {
        conf = new LimitedNormalConfigurer(mu, sigma, min, max, limitedMin, limitedMax);
        config(conf);
    }

    @Override
    public void writeBackToXML(BackWriter bw) {
        bw.writeSimpleType("mu", conf.getMu());
        bw.writeSimpleType("sigma", conf.getSigma());
        bw.writeSimpleType("min", conf.getMin());
        bw.writeSimpleType("max", conf.getMax());
        bw.writeSimpleType("limitedMin", conf.isLimitedMin());
        bw.writeSimpleType("limitedMax", conf.isLimitedMax());
    }

    public void config(LimitedNormalConfigurer dc) {
        mu = dc.getMu();
        sigma = dc.getSigma();
        limitedMin = dc.isLimitedMin();
        limitedMax = dc.isLimitedMax();

        limitedNormal = new NormalDistributionImpl(mu, sigma);

        if (limitedMin == false) {
            if (limitedMax == false) {
                limitType = LIMIT_NORMAL_DIST_NONE;
            } else {
                // only max is limted
                limitType = LIMIT_NORMAL_DIST_MAX;
                max = dc.getMax();
                try {
                    pmax = limitedNormal.cumulativeProbability(max);
                } catch (MathException e) {
                    e.printStackTrace();
                }
            }
        } else {
            if (limitedMax == false) {
                // only min is limited.
                limitType = LIMIT_NORMAL_DIST_MIN;
                min = dc.getMin();
                try {
                    pmin = limitedNormal.cumulativeProbability(min);
                } catch (MathException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            } else {
                // both sides limited.
                limitType = LIMIT_NORMAL_DIST_BOTH;

                // make sure min is really smaller than max.
                if (max > min) {
                    min = dc.getMin();
                    max = dc.getMax();
                } else {
                    max = dc.getMin();
                    min = dc.getMax();
                }

                // get min and max probabilites that are possible
                try {
                    pmin = limitedNormal.cumulativeProbability(min);
                    pmax = limitedNormal.cumulativeProbability(max);

                    pfactor = pmax - pmin;

                } catch (MathException e) {
                    e.printStackTrace();
                }
            }
        }
        pfactor = pmax - pmin;

        System.out.println("configured Limited Normal Distribution of type " + limitType);
    }

    public double returnValue() {
        double random = pmin + Simulator.getRandom().nextDouble() * pfactor;
        double result;

        try {
            result = limitedNormal.inverseCumulativeProbability(random);
        } catch (MathException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
            result = 0;
        }

        return result;
    }

    /**
     * @return Returns the limitType.
     */
    public int getLimitType() {
        return limitType;
    }

    /**
     * Returns a random value that is distributed as a Normal Distribution with
     * an upper and lower limit.
     * 
     * @param _mu
     *            average
     * @param _sigma
     *            standard deviation
     * @param _min
     *            lower limit, set to "null", if no limit
     * @param _max
     *            upper limit, set to "null", if no limit
     * @return as double
     */
    public static double returnValue(double _mu, double _sigma, Double _min, Double _max) {
        int llimitType;
        double lmax;
        double lmin;
        double lpmax = 1;
        double lpmin = 0;
        double lpfactor;

        NormalDistributionImpl llimitedNormal = new NormalDistributionImpl(_mu, _sigma);
        if (_min == null) {
            if (_max == null) {
                llimitType = LIMIT_NORMAL_DIST_NONE;
            } else {
                // only max is limted
                llimitType = LIMIT_NORMAL_DIST_MAX;
                lmax = _max.doubleValue();
                try {
                    lpmax = llimitedNormal.cumulativeProbability(lmax);
                } catch (MathException e) {
                    e.printStackTrace();
                }
            }
        } else {
            if (_max == null) {
                // only min is limited.
                llimitType = LIMIT_NORMAL_DIST_MIN;
                lmin = _min.doubleValue();
                try {
                    lpmin = llimitedNormal.cumulativeProbability(lmin);
                } catch (MathException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            } else {
                // both sides limited.
                llimitType = LIMIT_NORMAL_DIST_BOTH;

                // make sure min is really smaller than max.
                if (_max.doubleValue() > _min.doubleValue()) {
                    lmin = _min.doubleValue();
                    lmax = _max.doubleValue();
                } else {
                    lmax = _min.doubleValue();
                    lmin = _max.doubleValue();
                }

                // get min and max probabilites that are possible
                try {
                    lpmin = llimitedNormal.cumulativeProbability(lmin);
                    lpmax = llimitedNormal.cumulativeProbability(lmax);

                    lpfactor = lpmax - lpmin;

                } catch (MathException e) {
                    e.printStackTrace();
                }
            }
        }
        lpfactor = lpmax - lpmin;

        double lrandom = lpmin + Simulator.getRandom().nextDouble() * lpfactor;
        double lresult;

        try {
            lresult = llimitedNormal.inverseCumulativeProbability(lrandom);
        } catch (MathException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
            lresult = 0;
        }

        return lresult;

    }

    private class LimitedNormalConfigurer {
        private double mu;

        private double sigma;

        private double min;

        private double max;

        private boolean limitedMin;

        private boolean limitedMax;

        public LimitedNormalConfigurer(double mu, double sigma, double min, double max, boolean limitedMin,
                boolean limitedMax) {
            super();
            this.mu = mu;
            this.sigma = sigma;
            this.min = min;
            this.max = max;
            this.limitedMin = limitedMin;
            this.limitedMax = limitedMax;
        }

        /**
         * @return Returns the mu.
         */
        public double getMu() {
            return mu;
        }

        /**
         * @return Returns the sigma.
         */
        public double getSigma() {
            return sigma;
        }

        /**
         * @return Returns the max.
         */
        public double getMax() {
            return max;
        }

        /**
         * @return Returns the min.
         */
        public double getMin() {
            return min;
        }

        /**
         * @return Returns the limitedMax.
         */
        public boolean isLimitedMax() {
            return limitedMax;
        }

        /**
         * @return Returns the limitedMin.
         */
        public boolean isLimitedMin() {
            return limitedMin;
        }

        @Override
        public String toString() {
            return "LimitedNormalDistribution [mu=" + mu + ", sigma=" + sigma + ", min=" + min + ", max=" + max
                    + ", limitedMin=" + limitedMin + ", limitedMax=" + limitedMax + "]";
        }
    }

    public String toString() {
        return conf.toString();
    }
}