Java tutorial
/* * Copyright (C) 2012 uebb.tu-berlin.de. * * This file is part of modim * * modim is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * modim is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with modim. If not, see <http://www.gnu.org/licenses/>. */ package de.tuberlin.uebb.jdae.solvers; import java.util.Arrays; import org.apache.commons.math3.analysis.MultivariateMatrixFunction; import org.apache.commons.math3.analysis.MultivariateVectorFunction; import org.apache.commons.math3.analysis.differentiation.JacobianFunction; import org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableVectorFunction; import org.apache.commons.math3.optim.InitialGuess; import org.apache.commons.math3.optim.MaxEval; import org.apache.commons.math3.optim.SimpleVectorValueChecker; import org.apache.commons.math3.optim.nonlinear.vector.ModelFunction; import org.apache.commons.math3.optim.nonlinear.vector.ModelFunctionJacobian; import org.apache.commons.math3.optim.nonlinear.vector.Target; import org.apache.commons.math3.optim.nonlinear.vector.Weight; import org.apache.commons.math3.optim.nonlinear.vector.jacobian.GaussNewtonOptimizer; /** * @author choeger * */ public class OptimalitySolver implements MultivariateFunctionSolver<MultivariateDifferentiableVectorFunction> { final GaussNewtonOptimizer optim = new GaussNewtonOptimizer(new SimpleVectorValueChecker(1e-6, 1e-6)); @Override public double[] solve(int maxEval, MultivariateDifferentiableVectorFunction f, double[] startValue) { final double[] zeros = startValue.clone(); final double[] ones = startValue.clone(); Arrays.fill(zeros, 0.0); Arrays.fill(ones, 1.0); return optim.optimize(new MaxEval(maxEval), new InitialGuess(startValue), new Target(zeros), new Weight(ones), new ModelFunction(f), new ModelFunctionJacobian(new JacobianFunction(f))) .getPoint(); } public double[] solve(int maxEval, MultivariateVectorFunction residual, MultivariateMatrixFunction jacobian, double[] startValue) { final double[] zeros = startValue.clone(); final double[] ones = startValue.clone(); Arrays.fill(zeros, 0.0); Arrays.fill(ones, 1.0); return optim.optimize(new MaxEval(maxEval), new InitialGuess(startValue), new Target(zeros), new Weight(ones), new ModelFunction(residual), new ModelFunctionJacobian(jacobian)).getPoint(); } }