de.termininistic.serein.examples.benchmarks.functions.unimodal.DixonPriceFunction.java Source code

Java tutorial

Introduction

Here is the source code for de.termininistic.serein.examples.benchmarks.functions.unimodal.DixonPriceFunction.java

Source

/**
 * Copyright (C) 2015 Tobias Uhlig (tobias.uhlig@unibw.de)
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package de.termininistic.serein.examples.benchmarks.functions.unimodal;

import org.apache.commons.math3.linear.ArrayRealVector;
import org.apache.commons.math3.linear.RealVector;

import de.termininistic.serein.examples.benchmarks.functions.BenchmarkFunction;
import de.termininistic.serein.examples.benchmarks.functions.Domain;

public class DixonPriceFunction implements BenchmarkFunction {
    public final static Domain DEFAULT_DOMAIN = new Domain(-10, 10);
    private final Domain domain;

    public DixonPriceFunction() {
        this(DEFAULT_DOMAIN);
    }

    public DixonPriceFunction(Domain domain) {
        this.domain = domain;
    }

    @Override
    public Domain getDomain() {
        return domain;
    }

    @Override
    public RealVector getOptimum(int dimension) {
        double[] optimum = new double[dimension];
        for (int i = 0; i < optimum.length; i++) {
            optimum[i] = Math.pow(2, -((Math.pow(2, i) - 2 / Math.pow(2, i))));
        }
        return new ArrayRealVector(optimum);
    }

    @Override
    public double map(RealVector v) {

        double[] x = v.toArray();
        int n = x.length;
        double fx = (x[0] - 1) * (x[0] - 1);
        for (int i = 1; i < n; i++) {
            fx += i * Math.pow((2 * x[i] * x[i] - x[i - 1]), 2);
        }
        return fx;
    }

}