Java tutorial
/** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.ydy.cf.solver.impl; import java.util.Iterator; import java.util.List; import org.apache.mahout.cf.taste.recommender.RecommendedItem; import org.apache.mahout.math.DenseMatrix; import org.apache.mahout.math.Matrix; import org.apache.mahout.math.QRDecomposition; import org.apache.mahout.math.Vector; import com.google.common.base.Preconditions; import com.google.common.collect.Iterables; import com.google.common.collect.Lists; import com.ydy.cf.common.VectorUtils; import com.ydy.cf.model.MatrixLoader; /** * See <a href="http://www.hpl.hp.com/personal/Robert_Schreiber/papers/2008%20AAIM%20Netflix/netflix_aaim08(submitted).pdf"> * this paper.</a> */ public final class AlternatingLeastSquaresSolver extends AbstractRecommendationSolver { private List<Vector> featureVectors = Lists.newArrayList(); private final double lambda; private final int numFeatures; public AlternatingLeastSquaresSolver(String userId, Vector userRatings, double lambda, MatrixLoader loader, int numRecommendations) { super(userId, userRatings, loader, numRecommendations); this.lambda = lambda; this.numFeatures = this.Y.numCols(); Iterator<Vector.Element> iter = userRatings.iterateNonZero(); while (iter.hasNext()) { int index = iter.next().index(); featureVectors.add(this.Y.viewRow(index)); } System.out.println(AlternatingLeastSquaresSolver.class.getName() + userId + "\t" + userRatings); } public List<RecommendedItem> solveAll() { Vector userFeatures = solve(this.featureVectors, this.userRatings, this.lambda, this.numFeatures); return VectorUtils.buildRecommends(this.Y, this.userRatings, userFeatures, 100).retrieve(); } private Vector solve(Iterable<Vector> featureVectors, Vector ratingVector, double lambda, int numFeatures) { Preconditions.checkNotNull(featureVectors, "Feature vectors cannot be null"); Preconditions.checkArgument(!Iterables.isEmpty(featureVectors)); Preconditions.checkNotNull(ratingVector, "rating vector cannot be null"); Preconditions.checkArgument(ratingVector.getNumNondefaultElements() > 0, "Rating vector cannot be empty"); Preconditions.checkArgument(Iterables.size(featureVectors) == ratingVector.getNumNondefaultElements()); int nui = ratingVector.getNumNondefaultElements(); Matrix MiIi = createMiIi(featureVectors, numFeatures); Matrix RiIiMaybeTransposed = createRiIiMaybeTransposed(ratingVector); /* compute Ai = MiIi * t(MiIi) + lambda * nui * E */ Matrix Ai = addLambdaTimesNuiTimesE(MiIi.times(MiIi.transpose()), lambda, nui); /* compute Vi = MiIi * t(R(i,Ii)) */ Matrix Vi = MiIi.times(RiIiMaybeTransposed); /* compute Ai * ui = Vi */ return solve(Ai, Vi); } private Vector solve(Matrix Ai, Matrix Vi) { return new QRDecomposition(Ai).solve(Vi).viewColumn(0); } private Matrix addLambdaTimesNuiTimesE(Matrix matrix, double lambda, int nui) { Preconditions.checkArgument(matrix.numCols() == matrix.numRows()); for (int n = 0; n < matrix.numCols(); n++) { matrix.setQuick(n, n, matrix.getQuick(n, n) + lambda * nui); } return matrix; } private Matrix createMiIi(Iterable<Vector> featureVectors, int numFeatures) { Matrix MiIi = new DenseMatrix(numFeatures, Iterables.size(featureVectors)); int n = 0; for (Vector featureVector : featureVectors) { for (int m = 0; m < numFeatures; m++) { MiIi.setQuick(m, n, featureVector.getQuick(m)); } n++; } return MiIi; } private Matrix createRiIiMaybeTransposed(Vector ratingVector) { Preconditions.checkArgument(ratingVector.isSequentialAccess()); Matrix RiIiMaybeTransposed = new DenseMatrix(ratingVector.getNumNondefaultElements(), 1); Iterator<Vector.Element> ratingsIterator = ratingVector.iterateNonZero(); int index = 0; while (ratingsIterator.hasNext()) { Vector.Element elem = ratingsIterator.next(); RiIiMaybeTransposed.setQuick(index++, 0, elem.get()); } return RiIiMaybeTransposed; } }