com.ydy.cf.solver.impl.AlternatingLeastSquaresImplicitSolver.java Source code

Java tutorial

Introduction

Here is the source code for com.ydy.cf.solver.impl.AlternatingLeastSquaresImplicitSolver.java

Source

/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.ydy.cf.solver.impl;

import java.util.Iterator;
import java.util.List;
import java.util.Map;

import org.apache.mahout.cf.taste.common.TopK;
import org.apache.mahout.cf.taste.impl.recommender.GenericRecommendedItem;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.math.DenseMatrix;
import org.apache.mahout.math.DenseVector;
import org.apache.mahout.math.Matrix;
import org.apache.mahout.math.MatrixSlice;
import org.apache.mahout.math.QRDecomposition;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.function.Functions;
import org.apache.mahout.math.map.OpenIntObjectHashMap;

import com.google.common.base.Preconditions;
import com.ydy.cf.common.VectorUtils;
import com.ydy.cf.model.MatrixLoader;

/** see <a href="http://research.yahoo.com/pub/2433">Collaborative Filtering for Implicit Feedback Datasets</a> 
 * pre-loaded:
 *  1) userRatings
 *  2) matrix M
 *  2) matrix M'M
 * 
 * */

public class AlternatingLeastSquaresImplicitSolver extends AbstractRecommendationSolver {
    private final int numFeatures;
    private final double alpha;
    private final double lambda;
    private final Matrix YtransposeY;

    public AlternatingLeastSquaresImplicitSolver(String userId, Vector userRatings, double lambda, double alpha,
            MatrixLoader loader, int numRecommendations) {
        super(userId, userRatings, loader, numRecommendations);
        this.lambda = lambda;
        this.alpha = alpha;
        this.YtransposeY = loader.getYtransposeY();
        this.numFeatures = this.Y.columnSize();
        System.out.println(AlternatingLeastSquaresImplicitSolver.class.getName() + "\tuserRatings: " + userId + "\t"
                + this.userRatings);
    }

    public List<RecommendedItem> solveAll() {
        Vector userFeatures = solve(this.userRatings);
        return VectorUtils.buildRecommends(this.Y, this.userRatings, userFeatures, 100).retrieve();
    }

    public Vector solve(Vector ratings) {
        Matrix A = YtransposeY.plus(YtransponseCuMinusIYPlusLambdaI(ratings));
        Matrix y = YtransponseCuPu(ratings);
        Vector solved = solve(A, y);
        return solved;
    }

    private static Vector solve(Matrix A, Matrix y) {
        return new QRDecomposition(A).solve(y).viewColumn(0);
    }

    protected double confidence(double rating) {
        return 1 + alpha * rating;
    }

    /** Y' (Cu - I) Y +  I */
    private Matrix YtransponseCuMinusIYPlusLambdaI(Vector userRatings) {
        Preconditions.checkArgument(userRatings.isSequentialAccess(), "need sequential access to ratings!");

        /* (Cu -I) Y */
        OpenIntObjectHashMap<Vector> CuMinusIY = new OpenIntObjectHashMap<Vector>();
        Iterator<Vector.Element> ratings = userRatings.iterateNonZero();
        while (ratings.hasNext()) {
            Vector.Element e = ratings.next();
            Vector curYRow = Y.viewRow(e.index());
            CuMinusIY.put(e.index(), curYRow.times(confidence(e.get()) - 1));
        }

        Matrix YtransponseCuMinusIY = new DenseMatrix(numFeatures, numFeatures);

        /* Y' (Cu -I) Y by outer products */
        ratings = userRatings.iterateNonZero();
        while (ratings.hasNext()) {
            Vector.Element e = ratings.next();
            for (Vector.Element feature : Y.viewRow(e.index())) {
                Vector partial = CuMinusIY.get(e.index()).times(feature.get());
                YtransponseCuMinusIY.viewRow(feature.index()).assign(partial, Functions.PLUS);
            }
        }

        /* Y' (Cu - I) Y +  I  add lambda on the diagonal */
        for (int feature = 0; feature < numFeatures; feature++) {
            YtransponseCuMinusIY.setQuick(feature, feature,
                    YtransponseCuMinusIY.getQuick(feature, feature) + lambda);
        }

        return YtransponseCuMinusIY;
    }

    /** Y' Cu p(u) */
    private Matrix YtransponseCuPu(Vector userRatings) {
        Preconditions.checkArgument(userRatings.isSequentialAccess(), "need sequential access to ratings!");

        Vector YtransponseCuPu = new DenseVector(numFeatures);

        Iterator<Vector.Element> ratings = userRatings.iterateNonZero();
        while (ratings.hasNext()) {
            Vector.Element e = ratings.next();
            Vector curYRow = Y.viewRow(e.index());
            YtransponseCuPu.assign(curYRow.times(confidence(e.get())), Functions.PLUS);
        }

        return columnVectorAsMatrix(YtransponseCuPu);
    }

    private Matrix columnVectorAsMatrix(Vector v) {
        Matrix matrix = new DenseMatrix(numFeatures, 1);
        for (Vector.Element e : v) {
            matrix.setQuick(e.index(), 0, e.get());
        }
        return matrix;
    }

    public TopK<RecommendedItem> buildRecommends(Vector userRatings, Vector userFeatures, int topK) {
        final Map<Integer, Boolean> alreadyRated = VectorUtils.keys(userRatings);
        final TopK<RecommendedItem> topKItems = new TopK<RecommendedItem>(topK, VectorUtils.BY_PREFERENCE_VALUE);
        Iterator<MatrixSlice> rows = Y.iterator();
        while (rows.hasNext()) {
            MatrixSlice row = rows.next();
            int itemId = row.index();
            Vector itemFeatures = row.vector();
            if (!alreadyRated.containsKey(itemId)) {
                double predictedRating = userFeatures.dot(itemFeatures);
                topKItems.offer(new GenericRecommendedItem(itemId, (float) predictedRating));
            }
        }
        return topKItems;
    }

}