com.umaircheema.mahout.utils.classifiers.NaiveBayesClassifier.java Source code

Java tutorial

Introduction

Here is the source code for com.umaircheema.mahout.utils.classifiers.NaiveBayesClassifier.java

Source

/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.umaircheema.mahout.utils.classifiers;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.StringReader;
import java.util.HashMap;
import java.util.Map;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.analysis.tokenattributes.CharTermAttribute;
import org.apache.lucene.util.Version;
import org.apache.mahout.classifier.naivebayes.BayesUtils;
import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;
import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;
import org.apache.mahout.common.Pair;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileIterable;
import org.apache.mahout.math.RandomAccessSparseVector;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.Vector.Element;
import org.apache.mahout.vectorizer.TFIDF;

import com.google.common.collect.ConcurrentHashMultiset;
import com.google.common.collect.Multiset;

/**
 * Simply Utility to demonstrate classifying a document using the Mahout Bayes
 * classifier. Uses the Lucene StandardAnalyzer for Tokenization.
 */
public class NaiveBayesClassifier {

    public static Map<String, Integer> readDictionnary(Configuration conf, Path dictionnaryPath) {
        Map<String, Integer> dictionnary = new HashMap<String, Integer>();
        for (Pair<Text, IntWritable> pair : new SequenceFileIterable<Text, IntWritable>(dictionnaryPath, true,
                conf)) {
            dictionnary.put(pair.getFirst().toString(), pair.getSecond().get());
        }
        return dictionnary;
    }

    public static Map<Integer, Long> readDocumentFrequency(Configuration conf, Path documentFrequencyPath) {
        Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();
        for (Pair<IntWritable, LongWritable> pair : new SequenceFileIterable<IntWritable, LongWritable>(
                documentFrequencyPath, true, conf)) {
            documentFrequency.put(pair.getFirst().get(), pair.getSecond().get());
        }
        return documentFrequency;
    }

    public static void main(String[] args) throws Exception {
        if (args.length < 5) {
            System.out.println("Mahout Naive Bayesian Classifier");
            System.out.println(
                    "Classifies input text document into a class given a model, dictionary, document frequency and input file");
            System.out.println(
                    "Arguments: [model] [label_index] [dictionary] [document-frequency] [input-text-file]");
            return;
        }
        String modelPath = args[0];
        String labelIndexPath = args[1];
        String dictionaryPath = args[2];
        String documentFrequencyPath = args[3];
        String inputFilePath = args[4];

        Configuration configuration = new Configuration();

        // model is a matrix (wordId, labelId) => probability score
        NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), configuration);

        StandardNaiveBayesClassifier classifier = new StandardNaiveBayesClassifier(model);

        // labels is a map label => classId
        Map<Integer, String> labels = BayesUtils.readLabelIndex(configuration, new Path(labelIndexPath));
        Map<String, Integer> dictionary = readDictionnary(configuration, new Path(dictionaryPath));
        Map<Integer, Long> documentFrequency = readDocumentFrequency(configuration,
                new Path(documentFrequencyPath));

        // analyzer used to extract word from input file
        Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_36);

        int labelCount = labels.size();
        int documentCount = documentFrequency.get(-1).intValue();

        System.out.println("Number of labels: " + labelCount);
        System.out.println("Number of documents in training set: " + documentCount);

        BufferedReader reader = new BufferedReader(new FileReader(inputFilePath));
        StringBuilder stringBuilder = new StringBuilder();
        String lineSeparator = System.getProperty("line.separator");
        String line = null;
        while ((line = reader.readLine()) != null) {
            stringBuilder.append(line);
            stringBuilder.append(lineSeparator);
        }
        // Close the reader I/O
        reader.close();
        Multiset<String> words = ConcurrentHashMultiset.create();

        // extract words from input file
        TokenStream ts = analyzer.tokenStream("text", new StringReader(stringBuilder.toString()));
        CharTermAttribute termAtt = ts.addAttribute(CharTermAttribute.class);
        ts.reset();
        int wordCount = 0;
        while (ts.incrementToken()) {
            if (termAtt.length() > 0) {
                String word = ts.getAttribute(CharTermAttribute.class).toString();
                Integer wordId = dictionary.get(word);
                // if the word is not in the dictionary, skip it
                if (wordId != null) {
                    words.add(word);
                    wordCount++;
                }
            }
        }
        // Fixed error : close ts:TokenStream
        ts.end();
        ts.close();
        // create vector wordId => weight using tfidf
        Vector vector = new RandomAccessSparseVector(10000);
        TFIDF tfidf = new TFIDF();
        for (Multiset.Entry<String> entry : words.entrySet()) {
            String word = entry.getElement();
            int count = entry.getCount();
            Integer wordId = dictionary.get(word);
            Long freq = documentFrequency.get(wordId);
            double tfIdfValue = tfidf.calculate(count, freq.intValue(), wordCount, documentCount);
            vector.setQuick(wordId, tfIdfValue);
        }
        // With the classifier, we get one score for each label
        // The label with the highest score is the one the email is more likely
        // to
        // be associated to

        double bestScore = -Double.MAX_VALUE;
        int bestCategoryId = -1;
        Vector resultVector = classifier.classifyFull(vector);
        for (Element element : resultVector) {
            int categoryId = element.index();
            double score = element.get();
            if (score > bestScore) {
                bestScore = score;
                bestCategoryId = categoryId;
            }

        }
        System.out.println(" Class Labe: => " + labels.get(bestCategoryId));
        System.out.println(" Score: => " + bestScore);

        analyzer.close();

    }
}