com.uber.hoodie.common.BloomFilter.java Source code

Java tutorial

Introduction

Here is the source code for com.uber.hoodie.common.BloomFilter.java

Source

/*
 * Copyright (c) 2016 Uber Technologies, Inc. (hoodie-dev-group@uber.com)
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *          http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.uber.hoodie.common;

import com.uber.hoodie.exception.HoodieIndexException;
import org.apache.commons.io.output.ByteArrayOutputStream;
import org.apache.hadoop.util.bloom.Key;
import org.apache.hadoop.util.hash.Hash;

import javax.xml.bind.DatatypeConverter;

import java.io.*;
import java.nio.charset.StandardCharsets;

/**
 * A Bloom filter implementation built on top of {@link org.apache.hadoop.util.bloom.BloomFilter}.
 */
public class BloomFilter {
    /**
     * Used in computing the optimal Bloom filter size. This approximately equals 0.480453.
     */
    public static final double LOG2_SQUARED = Math.log(2) * Math.log(2);

    private org.apache.hadoop.util.bloom.BloomFilter filter = null;

    public BloomFilter(int numEntries, double errorRate) {
        this(numEntries, errorRate, Hash.MURMUR_HASH);
    }

    /**
     * Create a new Bloom filter with the given configurations.
     */
    public BloomFilter(int numEntries, double errorRate, int hashType) {
        // Bit size
        int bitSize = (int) Math.ceil(numEntries * (-Math.log(errorRate) / LOG2_SQUARED));
        // Number of the hash functions
        int numHashs = (int) Math.ceil(Math.log(2) * bitSize / numEntries);
        // The filter
        this.filter = new org.apache.hadoop.util.bloom.BloomFilter(bitSize, numHashs, hashType);
    }

    /**
     * Create the bloom filter from serialized string.
     */
    public BloomFilter(String filterStr) {
        this.filter = new org.apache.hadoop.util.bloom.BloomFilter();
        byte[] bytes = DatatypeConverter.parseBase64Binary(filterStr);
        DataInputStream dis = new DataInputStream(new ByteArrayInputStream(bytes));
        try {
            this.filter.readFields(dis);
            dis.close();
        } catch (IOException e) {
            throw new HoodieIndexException("Could not deserialize BloomFilter instance", e);
        }
    }

    public void add(String key) {
        if (key == null) {
            throw new NullPointerException("Key cannot by null");
        }
        filter.add(new Key(key.getBytes(StandardCharsets.UTF_8)));
    }

    public boolean mightContain(String key) {
        if (key == null) {
            throw new NullPointerException("Key cannot by null");
        }
        return filter.membershipTest(new Key(key.getBytes(StandardCharsets.UTF_8)));
    }

    /**
     * Serialize the bloom filter as a string.
     */
    public String serializeToString() {
        ByteArrayOutputStream baos = new ByteArrayOutputStream();
        DataOutputStream dos = new DataOutputStream(baos);
        try {
            filter.write(dos);
            byte[] bytes = baos.toByteArray();
            dos.close();
            return DatatypeConverter.printBase64Binary(bytes);
        } catch (IOException e) {
            throw new HoodieIndexException("Could not serialize BloomFilter instance", e);
        }
    }
}