Java tutorial
/* * Copyright 2008-2011 Grant Ingersoll, Thomas Morton and Drew Farris * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ------------------- * To purchase or learn more about Taming Text, by Grant Ingersoll, Thomas Morton and Drew Farris, visit * http://www.manning.com/ingersoll */ package com.tamingtext.classifier.bayes; import java.io.File; import java.io.FileInputStream; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Arrays; import org.apache.commons.cli2.CommandLine; import org.apache.commons.cli2.Group; import org.apache.commons.cli2.Option; import org.apache.commons.cli2.OptionException; import org.apache.commons.cli2.builder.ArgumentBuilder; import org.apache.commons.cli2.builder.DefaultOptionBuilder; import org.apache.commons.cli2.builder.GroupBuilder; import org.apache.commons.cli2.commandline.Parser; import org.apache.lucene.analysis.TokenStream; import org.apache.lucene.analysis.standard.StandardAnalyzer; import org.apache.lucene.analysis.tokenattributes.CharTermAttribute; import org.apache.lucene.util.Version; import org.apache.mahout.classifier.ClassifierResult; import org.apache.mahout.classifier.bayes.Algorithm; import org.apache.mahout.classifier.bayes.BayesAlgorithm; import org.apache.mahout.classifier.bayes.BayesParameters; import org.apache.mahout.classifier.bayes.ClassifierContext; import org.apache.mahout.classifier.bayes.Datastore; import org.apache.mahout.classifier.bayes.InMemoryBayesDatastore; import org.apache.mahout.classifier.bayes.InvalidDatastoreException; import org.apache.mahout.common.CommandLineUtil; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** Simply Utility to demonstrate classifying a document using the Mahout Bayes classifier. Uses the Lucene * StandardAnalyzer for Tokenization. */ public class ClassifyDocument { private static final Logger log = LoggerFactory.getLogger(ExtractTrainingData.class); public static void main(String[] args) { log.info("Command-line arguments: " + Arrays.toString(args)); DefaultOptionBuilder obuilder = new DefaultOptionBuilder(); ArgumentBuilder abuilder = new ArgumentBuilder(); GroupBuilder gbuilder = new GroupBuilder(); Option inputOpt = obuilder.withLongName("input").withRequired(true) .withArgument(abuilder.withName("input").withMinimum(1).withMaximum(1).create()) .withDescription("Input file").withShortName("i").create(); Option modelOpt = obuilder.withLongName("model").withRequired(true) .withArgument(abuilder.withName("model").withMinimum(1).withMaximum(1).create()) .withDescription("Model to use when classifying data").withShortName("m").create(); Option helpOpt = obuilder.withLongName("help").withDescription("Print out help").withShortName("h") .create(); Group group = gbuilder.withName("Options").withOption(inputOpt).withOption(modelOpt).withOption(helpOpt) .create(); try { Parser parser = new Parser(); parser.setGroup(group); CommandLine cmdLine = parser.parse(args); if (cmdLine.hasOption(helpOpt)) { CommandLineUtil.printHelp(group); return; } File inputFile = new File(cmdLine.getValue(inputOpt).toString()); if (!inputFile.isFile()) { throw new IllegalArgumentException(inputFile + " does not exist or is not a file"); } File modelDir = new File(cmdLine.getValue(modelOpt).toString()); if (!modelDir.isDirectory()) { throw new IllegalArgumentException(modelDir + " does not exist or is not a directory"); } BayesParameters p = new BayesParameters(); p.set("basePath", modelDir.getCanonicalPath()); Datastore ds = new InMemoryBayesDatastore(p); Algorithm a = new BayesAlgorithm(); ClassifierContext ctx = new ClassifierContext(a, ds); ctx.initialize(); //TODO: make the analyzer configurable StandardAnalyzer analyzer = new StandardAnalyzer(Version.LUCENE_36); TokenStream ts = analyzer.tokenStream(null, new InputStreamReader(new FileInputStream(inputFile), "UTF-8")); ArrayList<String> tokens = new ArrayList<String>(1000); while (ts.incrementToken()) { tokens.add(ts.getAttribute(CharTermAttribute.class).toString()); } String[] document = tokens.toArray(new String[tokens.size()]); ClassifierResult[] cr = ctx.classifyDocument(document, "unknown", 5); for (ClassifierResult r : cr) { System.err.println(r.getLabel() + "\t" + r.getScore()); } } catch (OptionException e) { log.error("Exception", e); CommandLineUtil.printHelp(group); } catch (IOException e) { log.error("IOException", e); } catch (InvalidDatastoreException e) { log.error("InvalidDataStoreException", e); } finally { } } }