com.skp.experiment.math.als.hadoop.ImplicitFeedbackAlternatingLeastSquaresSolver.java Source code

Java tutorial

Introduction

Here is the source code for com.skp.experiment.math.als.hadoop.ImplicitFeedbackAlternatingLeastSquaresSolver.java

Source

/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.skp.experiment.math.als.hadoop;

import com.google.common.base.Preconditions;
import org.apache.mahout.math.DenseMatrix;
import org.apache.mahout.math.DenseVector;
import org.apache.mahout.math.Matrix;
import org.apache.mahout.math.QRDecomposition;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.function.Functions;
import org.apache.mahout.math.map.OpenIntObjectHashMap;

import java.util.Iterator;

/** see <a href="http://research.yahoo.com/pub/2433">Collaborative Filtering for Implicit Feedback Datasets</a> */
public class ImplicitFeedbackAlternatingLeastSquaresSolver {

    private final int numFeatures;
    private final double alpha;
    private final double lambda;

    //private final OpenIntObjectHashMap<Vector> Y;
    private final Matrix Y;
    private final Matrix YtransposeY;

    @SuppressWarnings({ "rawtypes", "unchecked" })
    public ImplicitFeedbackAlternatingLeastSquaresSolver(int numFeatures, double lambda, double alpha, Matrix Y,
            Matrix YtransposeY) {
        //OpenIntObjectHashMap Y, Matrix YtransposeY) {
        this.numFeatures = numFeatures;
        this.lambda = lambda;
        this.alpha = alpha;
        this.Y = Y;
        this.YtransposeY = YtransposeY;
    }

    public Vector solve(Vector ratings) {
        return solve(YtransposeY.plus(YtransponseCuMinusIYPlusLambdaI(ratings)), YtransponseCuPu(ratings));
    }

    private static Vector solve(Matrix A, Matrix y) {
        return new QRDecomposition(A).solve(y).viewColumn(0);
    }

    protected double confidence(double rating) {
        return 1 + alpha * rating;
    }

    /** Y' (Cu - I) Y +  I */
    private Matrix YtransponseCuMinusIYPlusLambdaI(Vector userRatings) {
        Preconditions.checkArgument(userRatings.isSequentialAccess(), "need sequential access to ratings!");

        /* (Cu -I) Y */
        OpenIntObjectHashMap<Vector> CuMinusIY = new OpenIntObjectHashMap<Vector>();
        Iterator<Vector.Element> ratings = userRatings.iterateNonZero();
        while (ratings.hasNext()) {
            Vector.Element e = ratings.next();
            CuMinusIY.put(e.index(), Y.viewRow(e.index()).times(confidence(e.get()) - 1));
            //CuMinusIY.put(e.index(), Y.get(e.index()).times(confidence(e.get()) - 1));
        }

        Matrix YtransponseCuMinusIY = new DenseMatrix(numFeatures, numFeatures);

        /* Y' (Cu -I) Y by outer products */
        ratings = userRatings.iterateNonZero();
        while (ratings.hasNext()) {
            Vector.Element e = ratings.next();
            //for (Vector.Element feature : Y.get(e.index())) {
            for (Vector.Element feature : Y.viewRow(e.index())) {
                Vector partial = CuMinusIY.get(e.index()).times(feature.get());
                YtransponseCuMinusIY.viewRow(feature.index()).assign(partial, Functions.PLUS);
            }
        }

        /* Y' (Cu - I) Y +  I  add lambda on the diagonal */
        for (int feature = 0; feature < numFeatures; feature++) {
            YtransponseCuMinusIY.setQuick(feature, feature,
                    YtransponseCuMinusIY.getQuick(feature, feature) + lambda);
        }

        return YtransponseCuMinusIY;
    }

    /** Y' Cu p(u) */
    private Matrix YtransponseCuPu(Vector userRatings) {
        Preconditions.checkArgument(userRatings.isSequentialAccess(), "need sequential access to ratings!");

        Vector YtransponseCuPu = new DenseVector(numFeatures);

        Iterator<Vector.Element> ratings = userRatings.iterateNonZero();
        while (ratings.hasNext()) {
            Vector.Element e = ratings.next();
            //YtransponseCuPu.assign(Y.get(e.index()).times(confidence(e.get())), Functions.PLUS);
            YtransponseCuPu.assign(Y.viewRow(e.index()).times(confidence(e.get())), Functions.PLUS);
        }

        return columnVectorAsMatrix(YtransponseCuPu);
    }

    private Matrix columnVectorAsMatrix(Vector v) {
        Matrix matrix = new DenseMatrix(numFeatures, 1);
        for (Vector.Element e : v) {
            matrix.setQuick(e.index(), 0, e.get());
        }
        return matrix;
    }

}