Java tutorial
/* * Copyright (c) 2018 by Andrew Charneski. * * The author licenses this file to you under the * Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance * with the License. You may obtain a copy * of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package com.simiacryptus.mindseye.layers.java; import com.google.gson.JsonObject; import com.simiacryptus.mindseye.lang.*; import com.simiacryptus.mindseye.layers.cudnn.ImgConcatLayer; import com.simiacryptus.mindseye.network.DAGNode; import com.simiacryptus.mindseye.network.PipelineNetwork; import javax.annotation.Nonnull; import javax.annotation.Nullable; import java.util.ArrayList; import java.util.List; import java.util.Map; import java.util.stream.IntStream; /** * This key works as a scaling function, similar to a father wavelet. Allows convolutional and pooling layers to work * across larger png regions. */ @SuppressWarnings("serial") public class RescaledSubnetLayer extends LayerBase { private final int scale; @Nullable private final Layer subnetwork; /** * Instantiates a new Rescaled subnet key. * * @param scale the scale * @param subnetwork the subnetwork */ public RescaledSubnetLayer(final int scale, final Layer subnetwork) { super(); this.scale = scale; this.subnetwork = subnetwork; this.subnetwork.addRef(); } /** * Instantiates a new Rescaled subnet key. * * @param json the json * @param rs the rs */ protected RescaledSubnetLayer(@Nonnull final JsonObject json, Map<CharSequence, byte[]> rs) { super(json); scale = json.getAsJsonPrimitive("scale").getAsInt(); JsonObject subnetwork = json.getAsJsonObject("subnetwork"); this.subnetwork = subnetwork == null ? null : Layer.fromJson(subnetwork, rs); } /** * From json rescaled subnet key. * * @param json the json * @param rs the rs * @return the rescaled subnet key */ public static RescaledSubnetLayer fromJson(@Nonnull final JsonObject json, Map<CharSequence, byte[]> rs) { return new RescaledSubnetLayer(json, rs); } @Override protected void _free() { this.subnetwork.freeRef(); super._free(); } @Nullable @Override public Result eval(@Nonnull final Result... inObj) { assert 1 == inObj.length; final TensorList batch = inObj[0].getData(); @Nonnull final int[] inputDims = batch.getDimensions(); assert 3 == inputDims.length; if (1 == scale) return subnetwork.eval(inObj); @Nonnull final PipelineNetwork network = new PipelineNetwork(); @Nullable final DAGNode condensed = network.wrap(new ImgReshapeLayer(scale, scale, false)); network.wrap(new ImgConcatLayer(), IntStream.range(0, scale * scale).mapToObj(subband -> { @Nonnull final int[] select = new int[inputDims[2]]; for (int i = 0; i < inputDims[2]; i++) { select[i] = subband * inputDims[2] + i; } return network.add(subnetwork, network.wrap(new ImgBandSelectLayer(select), condensed)); }).toArray(i -> new DAGNode[i])).freeRef(); network.wrap(new ImgReshapeLayer(scale, scale, true)).freeRef(); Result eval = network.eval(inObj); network.freeRef(); return eval; } @Nonnull @Override public JsonObject getJson(Map<CharSequence, byte[]> resources, DataSerializer dataSerializer) { @Nonnull final JsonObject json = super.getJsonStub(); json.addProperty("scale", scale); json.add("subnetwork", subnetwork.getJson(resources, dataSerializer)); return json; } @Nonnull @Override public List<double[]> state() { return new ArrayList<>(); } }