com.simiacryptus.mindseye.layers.java.FullyConnectedReferenceLayer.java Source code

Java tutorial

Introduction

Here is the source code for com.simiacryptus.mindseye.layers.java.FullyConnectedReferenceLayer.java

Source

/*
 * Copyright (c) 2018 by Andrew Charneski.
 *
 * The author licenses this file to you under the
 * Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance
 * with the License.  You may obtain a copy
 * of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package com.simiacryptus.mindseye.layers.java;

import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.util.FastRandom;
import com.simiacryptus.util.JsonUtil;
import com.simiacryptus.util.Util;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.UUID;
import java.util.function.DoubleSupplier;
import java.util.function.IntToDoubleFunction;
import java.util.function.ToDoubleBiFunction;
import java.util.function.ToDoubleFunction;
import java.util.stream.IntStream;

/**
 * A dense matrix operator using vector-matrix multiplication. Represents a fully connected key of synapses, where all
 * inputs are connected to all outputs via seperate coefficients.
 */
@SuppressWarnings("serial")
public class FullyConnectedReferenceLayer extends LayerBase {

    @SuppressWarnings("unused")
    private static final Logger log = LoggerFactory.getLogger(FullyConnectedReferenceLayer.class);
    /**
     * The Input dims.
     */
    @Nullable
    public final int[] inputDims;
    /**
     * The Output dims.
     */
    @Nullable
    public final int[] outputDims;
    /**
     * The Weights.
     */
    @Nullable
    public final Tensor weights;

    /**
     * Instantiates a new Fully connected key.
     */
    protected FullyConnectedReferenceLayer() {
        super();
        outputDims = null;
        weights = null;
        inputDims = null;
    }

    /**
     * Instantiates a new Fully connected key.
     *
     * @param inputDims  the input dims
     * @param outputDims the output dims
     */
    public FullyConnectedReferenceLayer(@Nonnull final int[] inputDims, @Nonnull final int[] outputDims) {
        this.inputDims = Arrays.copyOf(inputDims, inputDims.length);
        this.outputDims = Arrays.copyOf(outputDims, outputDims.length);
        final int inputs = Tensor.length(inputDims);
        final int outputs = Tensor.length(outputDims);
        weights = new Tensor(inputs, outputs);
        set(() -> {
            final double ratio = Math.sqrt(6. / (inputs + outputs + 1));
            final double fate = Util.R.get().nextDouble();
            final double v = (1 - 2 * fate) * ratio;
            return v;
        });
    }

    /**
     * Instantiates a new Fully connected key.
     *
     * @param json      the json
     * @param resources the resources
     */
    protected FullyConnectedReferenceLayer(@Nonnull final JsonObject json, Map<CharSequence, byte[]> resources) {
        super(json);
        outputDims = JsonUtil.getIntArray(json.getAsJsonArray("outputDims"));
        inputDims = JsonUtil.getIntArray(json.getAsJsonArray("inputDims"));
        weights = Tensor.fromJson(json.get("weights"), resources);
    }

    /**
     * From json fully connected key.
     *
     * @param json the json
     * @param rs   the rs
     * @return the fully connected key
     */
    public static FullyConnectedReferenceLayer fromJson(@Nonnull final JsonObject json,
            Map<CharSequence, byte[]> rs) {
        return new FullyConnectedReferenceLayer(json, rs);
    }

    @Override
    protected void _free() {
        weights.freeRef();
        super._free();
    }

    @Nonnull
    @Override
    public Result eval(final Result... inObj) {
        final Result inputResult = inObj[0];
        final TensorList indata = inputResult.getData();
        inputResult.addRef();
        indata.addRef();
        @Nonnull
        int[] inputDimensions = indata.getDimensions();
        assert Tensor.length(inputDimensions) == Tensor.length(this.inputDims) : Arrays.toString(inputDimensions)
                + " == " + Arrays.toString(this.inputDims);
        weights.addRef();
        return new Result(TensorArray.wrap(IntStream.range(0, indata.length()).mapToObj(index -> {
            @Nullable
            final Tensor input = indata.get(index);
            @Nullable
            final Tensor output = new Tensor(outputDims);
            weights.coordStream(false).forEach(c -> {
                int[] coords = c.getCoords();
                double prev = output.get(coords[1]);
                double w = weights.get(c);
                double i = input.get(coords[0]);
                double value = prev + w * i;
                output.set(coords[1], value);
            });
            input.freeRef();
            return output;
        }).toArray(i -> new Tensor[i])),
                (@Nonnull final DeltaSet<UUID> buffer, @Nonnull final TensorList delta) -> {
                    if (!isFrozen()) {
                        final Delta<UUID> deltaBuffer = buffer.get(FullyConnectedReferenceLayer.this.getId(),
                                getWeights().getData());
                        Tensor[] array = IntStream.range(0, indata.length()).mapToObj(i -> {
                            @Nullable
                            final Tensor inputTensor = indata.get(i);
                            @Nullable
                            final Tensor deltaTensor = delta.get(i);
                            @Nonnull
                            Tensor weights = new Tensor(FullyConnectedReferenceLayer.this.weights.getDimensions());
                            weights.coordStream(false).forEach(c -> {
                                int[] coords = c.getCoords();
                                weights.set(c, inputTensor.get(coords[0]) * deltaTensor.get(coords[1]));
                            });
                            inputTensor.freeRef();
                            deltaTensor.freeRef();
                            return weights;
                        }).toArray(i -> new Tensor[i]);
                        Tensor tensor = Arrays.stream(array).reduce((a, b) -> {
                            Tensor c = a.addAndFree(b);
                            b.freeRef();
                            return c;
                        }).get();
                        deltaBuffer.addInPlace(tensor.getData()).freeRef();
                        tensor.freeRef();
                    }
                    if (inputResult.isAlive()) {
                        @Nonnull
                        final TensorList tensorList = TensorArray
                                .wrap(IntStream.range(0, indata.length()).mapToObj(i -> {
                                    @Nullable
                                    final Tensor inputTensor = new Tensor(inputDims);
                                    @Nullable
                                    final Tensor deltaTensor = delta.get(i);
                                    weights.coordStream(false).forEach(c -> {
                                        int[] coords = c.getCoords();
                                        inputTensor.set(coords[0], inputTensor.get(coords[0])
                                                + weights.get(c) * deltaTensor.get(coords[1]));
                                    });
                                    deltaTensor.freeRef();
                                    return inputTensor;
                                }).toArray(i -> new Tensor[i]));
                        inputResult.accumulate(buffer, tensorList);
                    }
                }) {

            @Override
            protected void _free() {
                indata.freeRef();
                inputResult.freeRef();
                weights.freeRef();
            }

            @Override
            public boolean isAlive() {
                return inputResult.isAlive() || !isFrozen();
            }

        };
    }

    @Nonnull
    @Override
    public JsonObject getJson(Map<CharSequence, byte[]> resources, @Nonnull DataSerializer dataSerializer) {
        @Nonnull
        final JsonObject json = super.getJsonStub();
        json.add("outputDims", JsonUtil.getJson(outputDims));
        json.add("inputDims", JsonUtil.getJson(inputDims));
        json.add("weights", weights.toJson(resources, dataSerializer));
        return json;
    }

    /**
     * Gets weights.
     *
     * @return the weights
     */
    @Nullable
    public Tensor getWeights() {
        return weights;
    }

    /**
     * Sets weights.
     *
     * @param f the f
     * @return the weights
     */
    @Nonnull
    public FullyConnectedReferenceLayer set(@Nonnull final DoubleSupplier f) {
        Arrays.parallelSetAll(weights.getData(), i -> f.getAsDouble());
        return this;
    }

    /**
     * Sets weights.
     *
     * @param f the f
     * @return the weights
     */
    @Nonnull
    public FullyConnectedReferenceLayer set(@Nonnull final IntToDoubleFunction f) {
        weights.set(f);
        return this;
    }

    /**
     * Sets weights.
     *
     * @param f the f
     * @return the weights
     */
    @Nonnull
    public FullyConnectedReferenceLayer setByCoord(@Nonnull final ToDoubleFunction<Coordinate> f) {
        weights.coordStream(true).forEach(c -> {
            weights.set(c, f.applyAsDouble(c));
        });
        return this;
    }

    /**
     * Sets weights.
     *
     * @param data the data
     * @return the weights
     */
    @Nonnull
    public FullyConnectedReferenceLayer set(final double[] data) {
        weights.set(data);
        return this;
    }

    /**
     * Set fully connected key.
     *
     * @param data the data
     * @return the fully connected key
     */
    @Nonnull
    public FullyConnectedReferenceLayer set(@Nonnull final Tensor data) {
        weights.set(data);
        return this;
    }

    /**
     * Sets weights.
     *
     * @param f the f
     * @return the weights
     */
    @Nonnull
    public FullyConnectedReferenceLayer setByCoord(@Nonnull final ToDoubleBiFunction<Coordinate, Coordinate> f) {
        new Tensor(inputDims).coordStream(true).forEach(in -> {
            new Tensor(outputDims).coordStream(true).forEach(out -> {
                weights.set(new int[] { in.getIndex(), out.getIndex() }, f.applyAsDouble(in, out));
            });
        });
        return this;
    }

    /**
     * Sets weights log.
     *
     * @param value the value
     * @return the weights log
     */
    @Nonnull
    public FullyConnectedReferenceLayer setWeightsLog(final double value) {
        weights.coordStream(false).forEach(c -> {
            weights.set(c, (FastRandom.INSTANCE.random() - 0.5) * Math.pow(10, value));
        });
        return this;
    }

    @Nonnull
    @Override
    public List<double[]> state() {
        return Arrays.asList(getWeights().getData());
    }

}