Java tutorial
/* * Copyright (c) 2018 by Andrew Charneski. * * The author licenses this file to you under the * Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance * with the License. You may obtain a copy * of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package com.simiacryptus.mindseye.layers.cudnn; import com.google.gson.JsonObject; import com.simiacryptus.mindseye.lang.DataSerializer; import com.simiacryptus.mindseye.lang.Layer; import com.simiacryptus.mindseye.lang.Result; import com.simiacryptus.mindseye.lang.Tensor; import com.simiacryptus.mindseye.lang.cudnn.MultiPrecision; import com.simiacryptus.mindseye.lang.cudnn.Precision; import com.simiacryptus.mindseye.layers.StochasticComponent; import com.simiacryptus.mindseye.layers.java.ValueLayer; import com.simiacryptus.mindseye.layers.java.WrapperLayer; import com.simiacryptus.mindseye.network.CountingResult; import com.simiacryptus.mindseye.network.DAGNetwork; import com.simiacryptus.mindseye.network.DAGNode; import com.simiacryptus.mindseye.network.PipelineNetwork; import javax.annotation.Nonnull; import javax.annotation.Nullable; import java.util.Arrays; import java.util.Map; import java.util.Random; import java.util.stream.IntStream; /** * This key works as a scaling function, similar to a father wavelet. Allows convolutional and pooling layers to work * across larger png regions. */ @SuppressWarnings("serial") public class StochasticSamplingSubnetLayer extends WrapperLayer implements StochasticComponent, MultiPrecision<StochasticSamplingSubnetLayer> { private final int samples; private Precision precision = Precision.Double; private long seed = System.nanoTime(); private long layerSeed = System.nanoTime(); /** * Instantiates a new Rescaled subnet key. * * @param subnetwork the subnetwork * @param samples the samples */ public StochasticSamplingSubnetLayer(final Layer subnetwork, final int samples) { super(subnetwork); this.samples = samples; } /** * Instantiates a new Rescaled subnet key. * * @param json the json * @param rs the rs */ protected StochasticSamplingSubnetLayer(@Nonnull final JsonObject json, Map<CharSequence, byte[]> rs) { super(json, rs); samples = json.getAsJsonPrimitive("samples").getAsInt(); seed = json.getAsJsonPrimitive("seed").getAsInt(); layerSeed = json.getAsJsonPrimitive("layerSeed").getAsInt(); this.precision = Precision.valueOf(json.getAsJsonPrimitive("precision").getAsString()); } /** * From json rescaled subnet key. * * @param json the json * @param rs the rs * @return the rescaled subnet key */ public static StochasticSamplingSubnetLayer fromJson(@Nonnull final JsonObject json, Map<CharSequence, byte[]> rs) { return new StochasticSamplingSubnetLayer(json, rs); } /** * Average result. * * @param samples the samples * @param precision the precision * @return the result */ public static Result average(final Result[] samples, final Precision precision) { PipelineNetwork gateNetwork = new PipelineNetwork(1); gateNetwork.wrap(new ProductLayer().setPrecision(precision), gateNetwork.getInput(0), gateNetwork .wrap(new ValueLayer(new Tensor(1, 1, 1).mapAndFree(v -> 1.0 / samples.length)), new DAGNode[] {})) .freeRef(); SumInputsLayer sumInputsLayer = new SumInputsLayer().setPrecision(precision); try { return gateNetwork.evalAndFree(sumInputsLayer.evalAndFree(samples)); } finally { sumInputsLayer.freeRef(); gateNetwork.freeRef(); } } @Nullable @Override public Result eval(@Nonnull final Result... inObj) { Result[] counting = Arrays.stream(inObj).map(r -> { return new CountingResult(r, samples); }).toArray(i -> new Result[i]); return average(Arrays.stream(getSeeds()).mapToObj(seed -> { Layer inner = getInner(); if (inner instanceof DAGNetwork) { ((DAGNetwork) inner).visitNodes(node -> { Layer layer = node.getLayer(); if (layer instanceof StochasticComponent) { ((StochasticComponent) layer).shuffle(seed); } if (layer instanceof MultiPrecision<?>) { ((MultiPrecision) layer).setPrecision(precision); } }); } if (inner instanceof MultiPrecision<?>) { ((MultiPrecision) inner).setPrecision(precision); } if (inner instanceof StochasticComponent) { ((StochasticComponent) inner).shuffle(seed); } inner.setFrozen(isFrozen()); return inner.eval(counting); }).toArray(i -> new Result[i]), precision); } /** * Get seeds long [ ]. * * @return the long [ ] */ public long[] getSeeds() { Random random = new Random(seed + layerSeed); return IntStream.range(0, this.samples).mapToLong(i -> random.nextLong()).toArray(); } @Nonnull @Override public JsonObject getJson(Map<CharSequence, byte[]> resources, DataSerializer dataSerializer) { @Nonnull final JsonObject json = super.getJson(resources, dataSerializer); json.addProperty("samples", samples); json.addProperty("seed", seed); json.addProperty("layerSeed", layerSeed); json.addProperty("precision", precision.name()); return json; } @Override public void shuffle(final long seed) { this.seed = seed; } @Override public void clearNoise() { seed = 0; } @Override public Precision getPrecision() { return precision; } @Nonnull @Override public StochasticSamplingSubnetLayer setPrecision(Precision precision) { this.precision = precision; return this; } }