Java tutorial
/* * Copyright (c) 2018 by Andrew Charneski. * * The author licenses this file to you under the * Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance * with the License. You may obtain a copy * of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package com.simiacryptus.mindseye.layers.cudnn; import com.google.gson.JsonObject; import com.simiacryptus.mindseye.lang.DataSerializer; import com.simiacryptus.mindseye.lang.Layer; import com.simiacryptus.mindseye.lang.LayerBase; import com.simiacryptus.mindseye.lang.Result; import com.simiacryptus.mindseye.lang.cudnn.CudaSystem; import com.simiacryptus.mindseye.lang.cudnn.MultiPrecision; import com.simiacryptus.mindseye.lang.cudnn.Precision; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import javax.annotation.Nonnull; import javax.annotation.Nullable; import java.util.Arrays; import java.util.List; import java.util.Map; /** * This key works as a scaling function, similar to a father wavelet. Allows convolutional and pooling layers to work * across larger png regions. Implemented via CudaSystem. */ @SuppressWarnings("serial") public class RescaledSubnetLayer extends LayerBase implements MultiPrecision<RescaledSubnetLayer> { private static final Logger log = LoggerFactory.getLogger(RescaledSubnetLayer.class); private int scale; private Layer layer; private Precision precision = Precision.Double; /** * Instantiates a new Img eval key. */ private RescaledSubnetLayer() { } /** * Instantiates a new Rescaled subnet key. * * @param scale the scale * @param layer the key */ public RescaledSubnetLayer(int scale, Layer layer) { this.scale = scale; this.layer = layer; } /** * Instantiates a new Img eval key. * * @param json the json * @param rs the rs */ protected RescaledSubnetLayer(@Nonnull final JsonObject json, Map<CharSequence, byte[]> rs) { super(json); scale = json.get("scale").getAsInt(); layer = Layer.fromJson(json, rs); this.precision = Precision.valueOf(json.getAsJsonPrimitive("precision").getAsString()); } /** * From json img eval key. * * @param json the json * @param rs the rs * @return the img eval key */ public static RescaledSubnetLayer fromJson(@Nonnull final JsonObject json, Map<CharSequence, byte[]> rs) { return new RescaledSubnetLayer(json, rs); } /** * Gets compatibility key. * * @return the compatibility key */ @Nonnull public Layer getCompatibilityLayer() { return new com.simiacryptus.mindseye.layers.java.RescaledSubnetLayer(scale, layer); } @Nullable @Override public Result evalAndFree(final Result... inObj) { if (!CudaSystem.isEnabled()) return getCompatibilityLayer().evalAndFree(inObj); log.warn("Not Implemented: " + getClass().getCanonicalName()); return getCompatibilityLayer().evalAndFree(inObj); } @Nonnull @Override public JsonObject getJson(Map<CharSequence, byte[]> resources, DataSerializer dataSerializer) { @Nonnull final JsonObject json = super.getJsonStub(); json.addProperty("scale", scale); json.add("key", layer.getJson(resources, dataSerializer)); json.addProperty("precision", precision.name()); return json; } @Nonnull @Override public List<double[]> state() { return Arrays.asList(); } @Override public Precision getPrecision() { return precision; } @Nonnull @Override public RescaledSubnetLayer setPrecision(final Precision precision) { this.precision = precision; return this; } }