com.simiacryptus.mindseye.layers.cudnn.ImgCropLayer.java Source code

Java tutorial

Introduction

Here is the source code for com.simiacryptus.mindseye.layers.cudnn.ImgCropLayer.java

Source

/*
 * Copyright (c) 2018 by Andrew Charneski.
 *
 * The author licenses this file to you under the
 * Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance
 * with the License.  You may obtain a copy
 * of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package com.simiacryptus.mindseye.layers.cudnn;

import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.mindseye.lang.cudnn.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.UUID;
import java.util.stream.Stream;

/**
 * Reduces the resolution of the input by selecting a centered window. The output png will have the same number of
 * color bands.
 */
@SuppressWarnings("serial")
public class ImgCropLayer extends LayerBase implements MultiPrecision<ImgCropLayer> {
    private static final Logger log = LoggerFactory.getLogger(ImgCropLayer.class);

    private int sizeX;
    private int sizeY;
    private Precision precision = Precision.Double;

    /**
     * Instantiates a new Img eval key.
     */
    private ImgCropLayer() {
    }

    /**
     * Instantiates a new Img crop key.
     *
     * @param sizeX the size x
     * @param sizeY the size y
     */
    public ImgCropLayer(int sizeX, int sizeY) {
        this.sizeX = sizeX;
        this.sizeY = sizeY;
        assert 0 < sizeX;
        assert 0 < sizeY;
    }

    /**
     * Instantiates a new Img eval key.
     *
     * @param json the json
     * @param rs   the rs
     */
    protected ImgCropLayer(@Nonnull final JsonObject json, Map<CharSequence, byte[]> rs) {
        super(json);
        sizeX = json.get("sizeX").getAsInt();
        sizeY = json.get("sizeY").getAsInt();
        this.precision = Precision.valueOf(json.getAsJsonPrimitive("precision").getAsString());
        assert 0 < sizeX;
        assert 0 < sizeY;
    }

    /**
     * From json img eval key.
     *
     * @param json the json
     * @param rs   the rs
     * @return the img eval key
     */
    public static ImgCropLayer fromJson(@Nonnull final JsonObject json, Map<CharSequence, byte[]> rs) {
        return new ImgCropLayer(json, rs);
    }

    /**
     * Copy cuda tensor.
     *
     * @param gpu              the gpu
     * @param input            the input tensor
     * @param length           the length
     * @param inputDimensions  the input dimensions
     * @param outputDimensions the output dimensions
     * @param dirty            the dirty
     * @param precision        the precision
     * @return the cuda tensor
     */
    public static CudaTensor copy(final CudnnHandle gpu, final CudaTensor input, final int length,
            final int[] inputDimensions, final int[] outputDimensions, final boolean dirty, Precision precision) {
        if (3 != inputDimensions.length)
            throw new IllegalArgumentException("inputDimensions.length");
        if (3 != outputDimensions.length)
            throw new IllegalArgumentException("dimOut.length");
        if (inputDimensions[2] != outputDimensions[2]) {
            throw new IllegalArgumentException(String.format("%d != %d", inputDimensions[2], outputDimensions[2]));
        }
        //log.info(String.format("offset=%d,%d", offsetX, offsetY));
        @Nonnull
        final int[] viewDim = getViewDimensions(inputDimensions, outputDimensions);
        int sourceOffset = 0;
        int destinationOffset = 0;
        if (inputDimensions[0] < outputDimensions[0]) {
            destinationOffset += (outputDimensions[0] - inputDimensions[0]) / 2;
        } else {
            sourceOffset += (inputDimensions[0] - outputDimensions[0]) / 2;
        }
        if (inputDimensions[1] < outputDimensions[1]) {
            destinationOffset += outputDimensions[0] * ((outputDimensions[1] - inputDimensions[1]) / 2);
        } else {
            sourceOffset += input.descriptor.hStride * ((inputDimensions[1] - outputDimensions[1]) / 2);
        }
        assert sourceOffset >= 0;
        assert destinationOffset >= 0;
        assert sourceOffset + Tensor.length(viewDim) <= Tensor.length(inputDimensions);
        assert destinationOffset + Tensor.length(viewDim) <= Tensor.length(outputDimensions);

        @Nonnull
        final CudaDevice.CudaTensorDescriptor sourceViewDescriptor = gpu.newTensorDescriptor(precision, //
                length, //
                viewDim[2], //
                viewDim[1], //
                viewDim[0], //
                input.descriptor.nStride, //
                input.descriptor.cStride, //
                input.descriptor.hStride, //
                input.descriptor.wStride);
        CudaMemory inputTensorMemory = input.getMemory(gpu);
        try {
            if (Arrays.equals(viewDim, outputDimensions)) {
                assert sourceOffset >= 0;
                assert destinationOffset == 0;
                return CudaTensor.wrap(inputTensorMemory.withByteOffset(sourceOffset * precision.size),
                        sourceViewDescriptor, precision);
            }

            @Nonnull
            final CudaDevice.CudaTensorDescriptor destinationViewDescriptor = gpu.newTensorDescriptor(precision, //
                    length, //
                    viewDim[2], //
                    viewDim[1], //
                    viewDim[0], //
                    outputDimensions[2] * outputDimensions[1] * outputDimensions[0], //
                    outputDimensions[1] * outputDimensions[0], //
                    outputDimensions[0], //
                    1);
            @Nonnull
            final CudaMemory outputBuffer = gpu.allocate((long) length * outputDimensions[2] * outputDimensions[1]
                    * outputDimensions[0] * precision.size, MemoryType.Managed.normalize(), dirty);
            CudaSystem.handle(gpu.cudnnTransformTensor(precision.getPointer(1.0), sourceViewDescriptor.getPtr(),
                    inputTensorMemory.getPtr().withByteOffset(sourceOffset * precision.size),
                    precision.getPointer(0.0), destinationViewDescriptor.getPtr(),
                    outputBuffer.getPtr().withByteOffset(destinationOffset * precision.size)));
            assert CudaDevice.isThreadDeviceId(gpu.getDeviceId());
            inputTensorMemory.dirty();
            outputBuffer.dirty();
            Stream.<ReferenceCounting>of(sourceViewDescriptor, destinationViewDescriptor)
                    .forEach(ReferenceCounting::freeRef);
            CudaDevice.CudaTensorDescriptor descriptorCudaResource = gpu.newTensorDescriptor(precision, //
                    length, //
                    outputDimensions[2], //
                    outputDimensions[1], //
                    outputDimensions[0], //
                    outputDimensions[2] * outputDimensions[1] * outputDimensions[0], //
                    outputDimensions[1] * outputDimensions[0], //
                    outputDimensions[0], //
                    1);
            return CudaTensor.wrap(outputBuffer, descriptorCudaResource, precision);
        } finally {
            inputTensorMemory.freeRef();
        }
    }

    /**
     * Get view dimensions int [ ].
     *
     * @param sourceDimensions      the source dimensions
     * @param destinationDimensions the destination dimensions
     * @return the int [ ]
     */
    @Nonnull
    public static int[] getViewDimensions(int[] sourceDimensions, int[] destinationDimensions) {
        @Nonnull
        final int[] viewDim = new int[3];
        Arrays.parallelSetAll(viewDim, i -> Math.min(sourceDimensions[i], destinationDimensions[i]));
        return viewDim;
    }

    /**
     * Gets compatibility key.
     *
     * @return the compatibility key
     */
    @Nonnull
    public Layer getCompatibilityLayer() {
        return this.as(com.simiacryptus.mindseye.layers.java.ImgCropLayer.class);
    }

    @Nullable
    @Override
    public Result evalAndFree(@Nonnull final Result... inObj) {
        if (!CudaSystem.isEnabled())
            return getCompatibilityLayer().evalAndFree(inObj);
        assert 1 == inObj.length;
        final Result input = inObj[0];
        final TensorList inputData = input.getData();
        assert 3 == inputData.getDimensions().length;
        final int length = inputData.length();
        @Nonnull
        int[] dimIn = inputData.getDimensions();
        if (dimIn[0] == sizeX && dimIn[1] == sizeY) {
            return input;
        }
        @Nonnull
        final int[] dimOut = Arrays.copyOf(dimIn, 3);
        dimOut[0] = sizeX;
        dimOut[1] = sizeY;
        final TensorList outputData = CudaSystem.run(gpu -> {
            @Nullable
            final CudaTensor inputTensor = gpu.getTensor(inputData, precision, MemoryType.Device, false);
            inputData.freeRef();
            boolean dirty = dimOut[0] <= dimIn[0] && dimOut[1] <= dimIn[1];
            assert dimOut[0] > 0;
            assert dimOut[1] > 0;
            assert dimOut[2] > 0;
            CudaTensor cudaTensor = copy(gpu, inputTensor, length, dimIn, dimOut, dirty, precision);
            Stream.<ReferenceCounting>of(inputTensor).forEach(ReferenceCounting::freeRef);
            return CudaTensorList.wrap(cudaTensor, length, dimOut, precision);
        }, inputData);
        int[] output_dimensions = outputData.getDimensions();
        int output_length = outputData.length();
        return new Result(outputData, (@Nonnull final DeltaSet<UUID> buffer, @Nonnull final TensorList delta) -> {
            if (!Arrays.equals(delta.getDimensions(), output_dimensions)) {
                throw new AssertionError(
                        Arrays.toString(delta.getDimensions()) + " != " + Arrays.toString(output_dimensions));
            }
            if (delta.length() != output_length) {
                throw new AssertionError(delta.length() + " != " + output_length);
            }
            assert delta.length() == length;

            if (input.isAlive()) {
                final TensorList passbackTensorList = CudaSystem.run(gpu -> {
                    @Nullable
                    final CudaTensor errorPtr = gpu.getTensor(delta, precision, MemoryType.Device, false);
                    delta.freeRef();
                    boolean dirty = dimOut[0] >= dimIn[0] && dimOut[1] >= dimIn[1];
                    CudaTensor cudaTensor = copy(gpu, errorPtr, length, dimOut, dimIn, dirty, precision);
                    Stream.<ReferenceCounting>of(errorPtr).forEach(ReferenceCounting::freeRef);
                    return CudaTensorList.wrap(cudaTensor, length, dimIn, precision);
                }, delta);
                input.accumulate(buffer, passbackTensorList);
            } else {
                delta.freeRef();
            }

        }) {

            @Override
            public void accumulate(final DeltaSet<UUID> buffer, final TensorList delta) {
                getAccumulator().accept(buffer, delta);
            }

            @Override
            protected void _free() {
                Arrays.stream(inObj).forEach(nnResult -> nnResult.freeRef());
            }

            @Override
            public boolean isAlive() {
                return Arrays.stream(inObj).anyMatch(x -> x.isAlive());
            }
        };
    }

    @Nonnull
    @Override
    public JsonObject getJson(Map<CharSequence, byte[]> resources, DataSerializer dataSerializer) {
        @Nonnull
        final JsonObject json = super.getJsonStub();
        json.addProperty("sizeY", sizeY);
        json.addProperty("sizeX", sizeX);
        json.addProperty("precision", precision.name());
        return json;
    }

    @Nonnull
    @Override
    public List<double[]> state() {
        return Arrays.asList();
    }

    @Override
    public Precision getPrecision() {
        return precision;
    }

    @Nonnull
    @Override
    public ImgCropLayer setPrecision(final Precision precision) {
        this.precision = precision;
        return this;
    }
}