com.simiacryptus.mindseye.layers.cudnn.ImgBandBiasLayer.java Source code

Java tutorial

Introduction

Here is the source code for com.simiacryptus.mindseye.layers.cudnn.ImgBandBiasLayer.java

Source

/*
 * Copyright (c) 2018 by Andrew Charneski.
 *
 * The author licenses this file to you under the
 * Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance
 * with the License.  You may obtain a copy
 * of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package com.simiacryptus.mindseye.layers.cudnn;

import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.mindseye.lang.cudnn.*;
import com.simiacryptus.mindseye.layers.java.ProductInputsLayer;
import com.simiacryptus.util.FastRandom;
import com.simiacryptus.util.Util;
import jcuda.jcudnn.cudnnOpTensorDescriptor;
import jcuda.jcudnn.cudnnOpTensorOp;

import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.UUID;
import java.util.function.DoubleSupplier;
import java.util.function.IntToDoubleFunction;
import java.util.stream.Stream;

/**
 * This key multiplies together the inputs, element-by-element. It can be used to implement integer-power activation
 * layers, such as the square needed in MeanSqLossLayer.
 */
@SuppressWarnings("serial")
public class ImgBandBiasLayer extends LayerBase implements MultiPrecision<ImgBandBiasLayer> {

    private Precision precision = Precision.Double;
    private Tensor bias;

    /**
     * Instantiates a new Product inputs key.
     *
     * @param bands the bands
     */
    public ImgBandBiasLayer(int bands) {
        this(new Tensor(1, 1, bands));
        this.bias.freeRef();
    }

    /**
     * Instantiates a new Product inputs key.
     *
     * @param bias the bias
     */
    public ImgBandBiasLayer(final Tensor bias) {
        this.bias = bias;
        this.bias.addRef();
    }

    /**
     * Instantiates a new Product inputs key.
     *
     * @param id the id
     * @param rs the rs
     */
    protected ImgBandBiasLayer(@Nonnull final JsonObject id, final Map<CharSequence, byte[]> rs) {
        super(id);
        this.precision = Precision.valueOf(id.getAsJsonPrimitive("precision").getAsString());
        this.bias = Tensor.fromJson(id.get("bias"), rs);
    }

    /**
     * From json product inputs key.
     *
     * @param json the json
     * @param rs   the rs
     * @return the product inputs key
     */
    public static ImgBandBiasLayer fromJson(@Nonnull final JsonObject json, Map<CharSequence, byte[]> rs) {
        return new ImgBandBiasLayer(json, rs);
    }

    /**
     * Gets compatibility key.
     *
     * @return the compatibility key
     */
    @Nonnull
    public Layer getCompatibilityLayer() {
        return this.as(ProductInputsLayer.class);
    }

    @Nullable
    @Override
    public Result evalAndFree(@Nonnull final Result... inObj) {
        if (!CudaSystem.isEnabled())
            return getCompatibilityLayer().evalAndFree(inObj);
        if (inObj.length != 1) {
            throw new IllegalArgumentException("inObj.length=" + inObj.length);
        }
        Result input = inObj[0];
        final TensorList inputData = input.getData();
        @Nonnull
        final int[] inputDimensions = inputData.getDimensions();
        final int length = inputData.length();
        if (3 != inputDimensions.length) {
            throw new IllegalArgumentException("dimensions=" + Arrays.toString(inputDimensions));
        }
        if (0 == Tensor.length(inputData.getDimensions())) {
            return input;
        }
        if (0 == bias.length()) {
            return input;
        }
        //   assert !right.isAlive();
        return new Result(CudaSystem.run(gpu -> {
            @Nonnull
            final CudaResource<cudnnOpTensorDescriptor> opDescriptor = gpu
                    .newOpDescriptor(cudnnOpTensorOp.CUDNN_OP_TENSOR_ADD, precision);
            @Nonnull
            final CudaDevice.CudaTensorDescriptor outputDescriptor = gpu.newTensorDescriptor(precision, length,
                    inputDimensions[2], inputDimensions[1], inputDimensions[0],
                    inputDimensions[2] * inputDimensions[1] * inputDimensions[0],
                    inputDimensions[1] * inputDimensions[0], inputDimensions[0], 1);
            @Nullable
            final CudaTensor inputTensor = gpu.getTensor(inputData, precision, MemoryType.Device, false);
            CudaMemory biasMem = gpu.allocate(bias.length() * precision.size, MemoryType.Device, true)
                    .write(precision, bias.getData());
            int[] biasDim = bias.getDimensions();
            CudaDevice.CudaTensorDescriptor biasDescriptor = gpu.newTensorDescriptor(precision, 1, biasDim[2],
                    biasDim[1], biasDim[0], biasDim[2] * biasDim[1] * biasDim[0], biasDim[1] * biasDim[0],
                    biasDim[0], 1);
            //assert lPtr.size == rPtr.size;
            @Nonnull
            final CudaMemory outputPtr = gpu.allocate((long) precision.size * outputDescriptor.nStride * length,
                    MemoryType.Managed.normalize(), true);
            CudaMemory inputMemory = inputTensor.getMemory(gpu);
            CudaSystem.handle(gpu.cudnnOpTensor(opDescriptor.getPtr(), precision.getPointer(1.0),
                    inputTensor.descriptor.getPtr(), inputMemory.getPtr(), precision.getPointer(1.0),
                    biasDescriptor.getPtr(), biasMem.getPtr(), precision.getPointer(0.0), outputDescriptor.getPtr(),
                    outputPtr.getPtr()));
            assert CudaDevice.isThreadDeviceId(gpu.getDeviceId());
            inputMemory.dirty();
            biasMem.dirty();
            outputPtr.dirty();
            inputMemory.freeRef();
            biasMem.freeRef();
            biasDescriptor.freeRef();
            inputTensor.freeRef();
            opDescriptor.freeRef();
            CudaTensor cudaTensor = CudaTensor.wrap(outputPtr, outputDescriptor, precision);
            return CudaTensorList.wrap(cudaTensor, length, inputDimensions, precision);
        }, inputData), (@Nonnull final DeltaSet<UUID> buffer, @Nonnull final TensorList delta) -> {
            if (!isFrozen()) {
                @Nonnull
                double[] biasDelta = CudaSystem.run(gpu -> {
                    @Nullable
                    final CudaTensor deltaTensor = gpu.getTensor(delta, precision, MemoryType.Device, false);

                    CudaMemory biasMem = gpu.allocate(bias.length() * precision.size, MemoryType.Device, true)
                            .write(precision, bias.getData());
                    int[] biasDim = bias.getDimensions();
                    CudaDevice.CudaTensorDescriptor biasDescriptor = gpu.newTensorDescriptor(precision, 1,
                            biasDim[2], biasDim[1], biasDim[0], biasDim[2] * biasDim[1] * biasDim[0],
                            biasDim[1] * biasDim[0], biasDim[0], 1);
                    CudaMemory deltaTensorMemory = deltaTensor.getMemory(gpu);
                    gpu.cudnnConvolutionBackwardBias(precision.getPointer(1.0), deltaTensor.descriptor.getPtr(),
                            deltaTensorMemory.getPtr(), precision.getPointer(0.0), biasDescriptor.getPtr(),
                            biasMem.getPtr());
                    assert CudaDevice.isThreadDeviceId(gpu.getDeviceId());
                    biasMem.dirty();
                    double[] biasV = new double[bias.length()];
                    biasMem.read(precision, biasV);
                    Stream.<ReferenceCounting>of(biasMem, deltaTensorMemory, deltaTensor, biasDescriptor)
                            .forEach(ReferenceCounting::freeRef);
                    return biasV;
                }, delta);
                buffer.get(ImgBandBiasLayer.this.getId(), bias).addInPlace(biasDelta).freeRef();
            }
            if (input.isAlive()) {
                input.accumulate(buffer, delta);
            } else {
                delta.freeRef();
            }
        }) {

            @Override
            public final void accumulate(DeltaSet<UUID> buffer, TensorList delta) {
                getAccumulator().accept(buffer, delta);
            }

            @Override
            protected void _free() {
                inputData.freeRef();
                input.freeRef();
            }

            @Override
            public boolean isAlive() {
                for (@Nonnull
                final Result element : inObj)
                    if (element.isAlive()) {
                        return true;
                    }
                return false;
            }

        };
    }

    @Nonnull
    @Override
    public JsonObject getJson(Map<CharSequence, byte[]> resources, DataSerializer dataSerializer) {
        @Nonnull
        JsonObject json = super.getJsonStub();
        json.addProperty("precision", precision.name());
        json.add("bias", bias.toJson(resources, dataSerializer));
        return json;
    }

    @Override
    public Precision getPrecision() {
        return precision;
    }

    @Nonnull
    @Override
    public ImgBandBiasLayer setPrecision(final Precision precision) {
        this.precision = precision;
        return this;
    }

    @Nonnull
    @Override
    public List<double[]> state() {
        return Arrays.asList(bias.getData());
    }

    /**
     * Add weights img band bias key.
     *
     * @param f the f
     * @return the img band bias key
     */
    @Nonnull
    public ImgBandBiasLayer addWeights(@Nonnull final DoubleSupplier f) {
        Util.add(f, getBias());
        return this;
    }

    /**
     * Add weights img band bias key.
     *
     * @param f the f
     * @return the img band bias key
     */
    @Nonnull
    public ImgBandBiasLayer setWeights(@Nonnull final IntToDoubleFunction f) {
        bias.setByCoord(c -> f.applyAsDouble(c.getIndex()));
        return this;
    }

    /**
     * Sets weights log.
     *
     * @param value the value
     * @return the weights log
     */
    @Nonnull
    public ImgBandBiasLayer setWeightsLog(final double value) {
        bias.setByCoord(c -> (FastRandom.INSTANCE.random() - 0.5) * Math.pow(10, value));
        return this;
    }

    /**
     * Sets and free.
     *
     * @param tensor the tensor
     * @return the and free
     */
    public ImgBandBiasLayer setAndFree(final Tensor tensor) {
        set(tensor);
        tensor.freeRef();
        return this;
    }

    /**
     * Set img band bias key.
     *
     * @param tensor the tensor
     * @return the img band bias key
     */
    public ImgBandBiasLayer set(final Tensor tensor) {
        bias.set(tensor);
        return this;
    }

    /**
     * Get bias double [ ].
     *
     * @return the double [ ]
     */
    public double[] getBias() {
        return bias.getData();
    }

    /**
     * Sets bias.
     *
     * @param bias the bias
     * @return the bias
     */
    public ImgBandBiasLayer setBias(Tensor bias) {
        if (this.bias != null) {
            this.bias.freeRef();
        }
        this.bias = bias;
        this.bias.addRef();
        return this;
    }

    @Override
    protected void _free() {
        if (this.bias != null) {
            bias.freeRef();
            bias = null;
        }
        super._free();
    }
}