com.polytech4A.cuttingstock.core.solver.SimulatedAnnealing.java Source code

Java tutorial

Introduction

Here is the source code for com.polytech4A.cuttingstock.core.solver.SimulatedAnnealing.java

Source

/*
 *
 *  * Project to resolve 2D cutting stock problem for Discreet Optimizations course at Polytech Lyon
 *  * Copyright (C) 2015.  CARON Antoine and CHAUSSENDE Adrien
 *  *
 *  * This program is free software: you can redistribute it and/or modify
 *  * it under the terms of the GNU Affero General Public License as
 *  * published by the Free Software Foundation, either version 3 of the
 *  * License, or (at your option) any later version.
 *  *
 *  * This program is distributed in the hope that it will be useful,
 *  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  * GNU Affero General Public License for more details.
 *  *
 *  * You should have received a copy of the GNU Affero General Public License
 *  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

package com.polytech4A.cuttingstock.core.solver;

import com.polytech4A.cuttingstock.core.method.LinearResolutionMethod;
import com.polytech4A.cuttingstock.core.method.Result;
import com.polytech4A.cuttingstock.core.model.Solution;
import com.polytech4A.cuttingstock.core.packing.Packer;
import com.polytech4A.cuttingstock.core.resolution.util.context.Context;
import com.polytech4A.cuttingstock.core.solver.neighbour.INeighbourUtils;
import org.apache.commons.math.util.FastMath;
import org.apache.log4j.Logger;

import java.util.*;

/**
 * Created by Adrien CHAUSSENDE on 13/03/2015.
 *
 * @author Adrien CHAUSSENDE
 * @version 1.0
 *          <p>
 *          Implementation of Simulated Annealing algorithm for the Cutting Stock problem. See more about the algorithm :
 *          http://en.wikipedia.org/wiki/Simulated_annealing
 */
public class SimulatedAnnealing extends NeighbourSolver {

    /**
     * Logger.
     */
    private static final Logger logger = Logger.getLogger(SimulatedAnnealing.class);

    /**
     * Coefficient of multiplication for generation of the first solution.
     */
    private static final double temp_coef = 0.9;
    /**
     * Limit number of iterations of the algorithm.
     */
    private long nbIterations;

    /**
     * Common ratio for decreasing the temperature through geometric progression.
     */
    private double mu;

    /**
     * Global time-varying parameter used in the algorithm.
     * See : http://en.wikipedia.org/wiki/Simulated_annealing#Acceptance_probabilities
     */
    private double temperature = -1;

    public SimulatedAnnealing(Packer packer, LinearResolutionMethod simplex,
            ArrayList<INeighbourUtils> neighbourGenerator, long nbIterations) {
        super(packer, simplex, neighbourGenerator);
        this.nbIterations = nbIterations;
    }

    public double getTemperature() {
        return temperature;
    }

    public double getMu() {
        return mu;
    }

    @Override
    public Solution getSolution(Solution solution, Context context) {
        setFirstTemperature(solution);
        logger.info("First Temperature " + getTemperature());
        setMu();
        logger.info("Mu value " + getMu());
        Solution retSolution = simulateAnnealing(solution);
        return retSolution;
    }

    /**
     * Simulate Annealing Algorithm.
     *
     * @param solution First Solution of the Algorithm, it's also best solution for beginning.
     * @return bestsolution Found.
     */
    public Solution simulateAnnealing(Solution solution) {
        Solution bestSolution = solution;
        Result bestCost = simplex.minimize(solution);
        Solution randomSolution;
        Result randomSolutionCost;
        Solution currentSolution = solution;
        Result currentCost = bestCost.clone();
        int step = (int) nbIterations / 100;
        int progress = 10;
        logger.info("First Cost = " + bestCost);
        double deltaF;
        for (int j = 0; j < 100; j++) {
            for (int i = 0; i < step; i++) {
                randomSolution = generateBetterNeighbour(currentSolution);
                randomSolutionCost = randomSolution.getCost();
                deltaF = currentCost.getCost() - randomSolutionCost.getCost();
                if (deltaF >= 0) {
                    currentSolution = randomSolution;
                    currentCost = randomSolutionCost;
                    if (currentCost.getCost() < bestCost.getCost()) {
                        bestSolution = currentSolution;
                        bestCost = currentCost;
                    }
                } else {
                    Random random = new Random(System.currentTimeMillis());
                    double p = random.nextDouble();
                    double exp = FastMath.exp((-deltaF) / temperature);
                    if (p <= exp) {
                        currentSolution = randomSolution;
                        currentCost = randomSolutionCost;
                    }
                }
            }
            temperature *= mu;
            if (j % progress == 0) {
                int pourcent = j / progress;
                pourcent *= 10;
                StringBuffer stbf = new StringBuffer();
                stbf.append("CSV;").append(temperature).append(";temperature;").append(bestCost.getCost())
                        .append(";bestcost;").append(pourcent).append("%...");
                logger.info(stbf.toString());
            }
        }
        logger.info("Best Cost :" + bestCost);
        return bestSolution;
    }

    /**
     * Set Temperature of Simulated Annealing Algorithm.
     *
     * @param solution solution onto generate temperature.
     * @return -1 if definition of the first temperature failed.
     * Temperature generated.
     */
    public double setFirstTemperature(Solution solution) {
        Solution clSolution = solution.clone();
        ArrayList<Solution> solutionsN = new ArrayList<>(); // Solutions from the neighbourhood of the solution.
        int nbIteration = (1000 * solution.getPatterns().get(0).getAmounts().size())
                / solution.getPatterns().size();
        for (int i = 0; i < nbIteration; i++) {
            Solution randomSolution = chooseRandomNeihbourUtils().getRandomNeighbour(clSolution);
            Solution packedSolution = packer.getPlacing(randomSolution);

            if (packedSolution.isPackable() && packedSolution.isValid()) {
                solutionsN.add(packedSolution);
            }
        }
        try {
            double temperature = solutionsN.parallelStream().mapToDouble(s -> {
                Result r = simplex.minimize(s);
                if (r == null) {
                    return (double) 0;
                } else {
                    return r.getCost();
                }
            }).max().getAsDouble() * temp_coef;
            this.temperature = temperature;
            return temperature;
        } catch (NoSuchElementException ex) {
            logger.error("Generation of first temperature", ex);
        }
        this.temperature = -1;
        return -1;
    }

    /**
     * Generate Mu from temperature and nbIterations.
     *
     * @return mu generated value.
     */
    public double setMu() {
        if (temperature != -1) {
            double mu = 0.989;
            this.mu = mu;
            return mu;
        } else {
            throw new NullPointerException("Temperature isn't defined");
        }
    }

    public Solution generateBetterNeighbour(Solution solution) {
        Map<Result, Solution> best = new HashMap<>(10);
        Solution randomSolution;
        Result randomSolutionCost;
        for (int i = 0; i < 10; i++) {
            do {
                randomSolutionCost = null;
                randomSolution = chooseRandomNeihbourUtils().getRandomNeighbour(solution);
                if (randomSolution.isValid()) {
                    randomSolution = packer.getPlacing(randomSolution);
                    if (randomSolution.isPackable()) {
                        randomSolutionCost = simplex.minimize(randomSolution);
                    }
                }
            } while (randomSolutionCost == null);
            best.put(randomSolutionCost, randomSolution);
        }
        Result r = best.keySet().parallelStream().min(new Comparator<Result>() {
            @Override
            public int compare(Result o1, Result o2) {
                return (int) (o1.getCost() - o2.getCost());
            }
        }).get();
        Solution s = best.get(r);
        s.setCost(r);
        return s;
    }
}