Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.strata.math.impl.linearalgebra; import static org.testng.AssertJUnit.assertTrue; import java.util.Arrays; import org.apache.commons.math3.linear.Array2DRowRealMatrix; import org.apache.commons.math3.linear.LUDecomposition; import org.apache.commons.math3.linear.RealMatrix; import org.testng.annotations.Test; import com.opengamma.strata.collect.array.DoubleArray; import com.opengamma.strata.collect.array.DoubleMatrix; import com.opengamma.strata.math.impl.FuzzyEquals; /** * Tests the LUDecompositionCommonsResult class with well conditioned data and * poorly conditioned data. */ @Test public class LUDecompositionCommonsResultTest { static double[][] rawAok = new double[][] { { 100.0000000000000000, 9.0000000000000000, 10.0000000000000000, 1.0000000000000000 }, { 9.0000000000000000, 50.0000000000000000, 19.0000000000000000, 15.0000000000000000 }, { 10.0000000000000000, 11.0000000000000000, 29.0000000000000000, 21.0000000000000000 }, { 8.0000000000000000, 10.0000000000000000, 20.0000000000000000, 28.0000000000000000 } }; static double[][] rawAsingular = new double[][] { { 1000000.0000000000000000, 2.0000000000000000, 3.0000000000000000 }, { 1000000.0000000000000000, 2.0000000000000000, 3.0000000000000000 }, { 4.0000000000000000, 5.0000000000000000, 6.0000000000000000 } }; static double[] rawRHSvect = new double[] { 1, 2, 3, 4 }; static double[][] rawRHSmat = new double[][] { { 1, 2 }, { 3, 4 }, { 5, 6 }, { 7, 8 } }; RealMatrix condok = new Array2DRowRealMatrix(rawAok); LUDecomposition decomp = new LUDecomposition(condok); LUDecompositionCommonsResult result = new LUDecompositionCommonsResult(decomp); @Test(expectedExceptions = IllegalArgumentException.class) public void checkThrowOnNull() { new LUDecompositionCommonsResult(null); } @Test(expectedExceptions = IllegalArgumentException.class) public void checkThrowOnSingular() { new LUDecompositionCommonsResult(new LUDecomposition(new Array2DRowRealMatrix(rawAsingular))); } public void testGetL() { double[][] expectedRaw = new double[][] { { 1.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.0000000000000000 }, { 0.0900000000000000, 1.0000000000000000, 0.0000000000000000, 0.0000000000000000 }, { 0.1000000000000000, 0.2053262858304534, 1.0000000000000000, 0.0000000000000000 }, { 0.0800000000000000, 0.1886562309412482, 0.6500406024227509, 1.0000000000000000 } }; assertTrue(FuzzyEquals.ArrayFuzzyEquals(result.getL().toArray(), expectedRaw)); } public void testGetU() { double[][] expectedRaw = new double[][] { { 100.0000000000000000, 9.0000000000000000, 10.0000000000000000, 1.0000000000000000 }, { 0.0000000000000000, 49.1899999999999977, 18.1000000000000014, 14.9100000000000001 }, { 0.0000000000000000, 0.0000000000000000, 24.2835942264687930, 17.8385850782679398 }, { 0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 13.5113310060192049 } }; assertTrue(FuzzyEquals.ArrayFuzzyEquals(result.getU().toArray(), expectedRaw)); } public void testGetDeterminant() { assertTrue(FuzzyEquals.SingleValueFuzzyEquals(result.getDeterminant(), 1613942.00000000)); } public void testGetP() { double[][] expectedRaw = new double[][] { { 1.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.0000000000000000 }, { 0.0000000000000000, 1.0000000000000000, 0.0000000000000000, 0.0000000000000000 }, { 0.0000000000000000, 0.0000000000000000, 1.0000000000000000, 0.0000000000000000 }, { 0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 1.0000000000000000 } }; assertTrue(FuzzyEquals.ArrayFuzzyEquals(result.getP().toArray(), expectedRaw)); } public void testGetPivot() { int[] expectedRaw = new int[] { 0, 1, 2, 3 }; assertTrue(Arrays.equals(result.getPivot(), expectedRaw)); } public void testSolveForVector() { double[] expectedRaw = new double[] { 0.0090821107573878, -0.0038563963265099, -0.0016307897061976, 0.1428043882617839 }; assertTrue(FuzzyEquals.ArrayFuzzyEquals(result.solve(rawRHSvect), expectedRaw)); assertTrue( FuzzyEquals.ArrayFuzzyEquals(result.solve(DoubleArray.copyOf(rawRHSvect)).toArray(), expectedRaw)); } public void testSolveForMatrix() { double[][] expectedRaw = new double[][] { { 0.0103938059732010, 0.0181642215147756 }, { -0.0147149030138629, -0.0077127926530197 }, { -0.0171480759531631, -0.0032615794123952 }, { 0.2645342893362958, 0.2856087765235678 } }; assertTrue( FuzzyEquals.ArrayFuzzyEquals(result.solve(DoubleMatrix.copyOf(rawRHSmat)).toArray(), expectedRaw)); } }