Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.math.statistics.leastsquare; import org.apache.commons.lang.NotImplementedException; import org.apache.commons.lang.ObjectUtils; import org.apache.commons.lang.Validate; import com.opengamma.analytics.math.matrix.DoubleMatrix1D; import com.opengamma.analytics.math.matrix.DoubleMatrix2D; /** * Container for the results of a least square (minimum chi-square) fit, where some model (with a set of parameters), is calibrated * to a data set. */ public class LeastSquareResults { @Override public String toString() { return "LeastSquareResults [chiSq=" + _chiSq + ", fit parameters=" + _parameters.toString() + ", covariance=" + _covariance.toString() + "]"; } private final double _chiSq; private final DoubleMatrix1D _parameters; private final DoubleMatrix2D _covariance; private final DoubleMatrix2D _inverseJacobian; public LeastSquareResults(LeastSquareResults from) { this(from._chiSq, from._parameters, from._covariance, from._inverseJacobian); } public LeastSquareResults(final double chiSq, final DoubleMatrix1D parameters, final DoubleMatrix2D covariance) { this(chiSq, parameters, covariance, null); } public LeastSquareResults(final double chiSq, final DoubleMatrix1D parameters, final DoubleMatrix2D covariance, final DoubleMatrix2D inverseJacobian) { Validate.isTrue(chiSq >= 0, "chi square < 0"); Validate.notNull(parameters, "parameters"); Validate.notNull(covariance, "covariance"); final int n = parameters.getNumberOfElements(); Validate.isTrue(covariance.getNumberOfColumns() == n, "covariance matrix not square"); Validate.isTrue(covariance.getNumberOfRows() == n, "covariance matrix wrong size"); //TODO test size of inverse Jacobian _chiSq = chiSq; _parameters = parameters; _covariance = covariance; _inverseJacobian = inverseJacobian; } /** * Gets the Chi-square of the fit * @return the chiSq */ public double getChiSq() { return _chiSq; } /** * Gets the value of the fitting parameters, when the chi-squared is minimised * @return the parameters */ public DoubleMatrix1D getFitParameters() { return _parameters; } /** * Gets the estimated covariance matrix of the standard errors in the fitting parameters. <b>Note</b> only in the case of * normally distributed errors, does this have any meaning full mathematical interpretation (See NR third edition, p812-816) * @return the formal covariance matrix */ public DoubleMatrix2D getCovariance() { return _covariance; } /** * This a matrix where the i,jth element is the (infinitesimal) sensitivity of the ith fitting parameter to the jth data * point (NOT the model point), when the fitting parameter are such that the chi-squared is minimised. So it is a type of (inverse) * Jacobian, but should not be confused with the model jacobian (sensitivity of model data points, to parameters) or its inverse. * @return a matrix */ public DoubleMatrix2D getFittingParameterSensitivityToData() { if (_inverseJacobian == null) { throw new NotImplementedException("The inverse Jacobian was not set"); } return _inverseJacobian; } @Override public int hashCode() { final int prime = 31; int result = 1; long temp; temp = Double.doubleToLongBits(_chiSq); result = prime * result + (int) (temp ^ (temp >>> 32)); result = prime * result + _covariance.hashCode(); result = prime * result + _parameters.hashCode(); result = prime * result + (_inverseJacobian == null ? 0 : _inverseJacobian.hashCode()); return result; } @Override public boolean equals(final Object obj) { if (this == obj) { return true; } if (obj == null) { return false; } if (getClass() != obj.getClass()) { return false; } final LeastSquareResults other = (LeastSquareResults) obj; if (Double.doubleToLongBits(_chiSq) != Double.doubleToLongBits(other._chiSq)) { return false; } if (!ObjectUtils.equals(_covariance, other._covariance)) { return false; } if (!ObjectUtils.equals(_inverseJacobian, other._inverseJacobian)) { return false; } return ObjectUtils.equals(_parameters, other._parameters); } }