Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.math.statistics.distribution; import java.util.Date; import org.apache.commons.lang.Validate; import cern.jet.random.Normal; import cern.jet.random.engine.MersenneTwister64; import cern.jet.random.engine.RandomEngine; import cern.jet.stat.Probability; import com.opengamma.analytics.math.statistics.distribution.fnlib.DERFC; /** * The normal distribution is a continuous probability distribution with probability density function * $$ * \begin{align*} * f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x - \mu)^2}{2\sigma^2}} * \end{align*} * $$ * where $\mu$ is the mean and $\sigma$ the standard deviation of * the distribution. * <p> * For values of the cumulative distribution function $|x| > 7.6$ this class calculates the cdf * directly. For all other methods and values of $x$, this class is a wrapper for the * <a href="http://acs.lbl.gov/software/colt/api/cern/jet/random/Normal.html">Colt</a> implementation of the normal distribution. */ public class NormalDistribution implements ProbabilityDistribution<Double> { private static final double ROOT2 = Math.sqrt(2); // TODO need a better seed private final double _mean; private final double _standardDeviation; private final Normal _normal; /** * @param mean The mean of the distribution * @param standardDeviation The standard deviation of the distribution, not negative or zero */ public NormalDistribution(final double mean, final double standardDeviation) { this(mean, standardDeviation, new MersenneTwister64(new Date())); } /** * @param mean The mean of the distribution * @param standardDeviation The standard deviation of the distribution, not negative or zero * @param randomEngine A generator of uniform random numbers, not null */ public NormalDistribution(final double mean, final double standardDeviation, final RandomEngine randomEngine) { Validate.isTrue(standardDeviation > 0, "standard deviation"); Validate.notNull(randomEngine); _mean = mean; _standardDeviation = standardDeviation; _normal = new Normal(mean, standardDeviation, randomEngine); } /** * {@inheritDoc} */ @Override public double getCDF(final Double x) { Validate.notNull(x); return DERFC.getErfc(-x / ROOT2) / 2; } /** * {@inheritDoc} */ @Override public double getPDF(final Double x) { Validate.notNull(x); return _normal.pdf(x); } /** * {@inheritDoc} */ @Override public double nextRandom() { return _normal.nextDouble(); } /** * {@inheritDoc} */ @Override public double getInverseCDF(final Double p) { Validate.notNull(p); Validate.isTrue(p >= 0 && p <= 1, "Probability must be >= 0 and <= 1"); return Probability.normalInverse(p); } /** * @return The mean */ public double getMean() { return _mean; } /** * @return The standard deviation */ public double getStandardDeviation() { return _standardDeviation; } @Override public int hashCode() { final int prime = 31; int result = 1; long temp; temp = Double.doubleToLongBits(_mean); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(_standardDeviation); result = prime * result + (int) (temp ^ (temp >>> 32)); return result; } @Override public boolean equals(final Object obj) { if (this == obj) { return true; } if (obj == null) { return false; } if (getClass() != obj.getClass()) { return false; } final NormalDistribution other = (NormalDistribution) obj; if (Double.doubleToLongBits(_mean) != Double.doubleToLongBits(other._mean)) { return false; } return Double.doubleToLongBits(_standardDeviation) == Double.doubleToLongBits(other._standardDeviation); } }