Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.math.statistics.distribution; import java.util.Date; import org.apache.commons.lang.Validate; import cern.jet.random.engine.MersenneTwister64; import cern.jet.random.engine.RandomEngine; /** * The Laplace distribution is a continuous probability distribution with probability density function * $$ * \begin{align*} * f(x)=\frac{1}{2b}e^{-\frac{|x-\mu|}{b}} * \end{align*} * $$ * where $\mu$ is the location parameter and $b$ is the scale parameter. The * cumulative distribution function and its inverse are defined as: * $$ * \begin{align*} * F(x)&= * \begin{cases} * \frac{1}{2}e^{\frac{x-\mu}{b}} & \text{if } x < \mu\\ * 1-\frac{1}{2}e^{-\frac{x-\mu}{b}} & \text{if } x\geq \mu * \end{cases}\\ * F^{-1}(p)&=\mu-b\text{ sgn}(p-0.5)\ln(1-2|p-0.5|) * \end{align*} * $$ * Given a uniform random variable $U$ drawn from the interval $(-\frac{1}{2}, \frac{1}{2}]$, * a Laplace-distributed random variable with parameters $\mu$ and $b$ is given by: * $$ * \begin{align*} * X=\mu-b\text{ sgn}(U)\ln(1-2|U|) * \end{align*} * $$ * */ public class LaplaceDistribution implements ProbabilityDistribution<Double> { // TODO need a better seed private final RandomEngine _engine; private final double _mu; private final double _b; /** * @param mu The location parameter * @param b The scale parameter, greater than zero */ public LaplaceDistribution(final double mu, final double b) { this(mu, b, new MersenneTwister64(new Date())); } /** * @param mu The location parameter * @param b The scale parameter, greater than zero * @param engine A uniform random number generator, not null */ public LaplaceDistribution(final double mu, final double b, final RandomEngine engine) { Validate.isTrue(b > 0, "b must be > 0"); Validate.notNull(engine); _mu = mu; _b = b; _engine = engine; } /** * {@inheritDoc} */ @Override public double getCDF(final Double x) { Validate.notNull(x); return 0.5 * (1 + Math.signum(x - _mu) * (1 - Math.exp(-Math.abs(x - _mu) / _b))); } /** * {@inheritDoc} */ @Override public double getInverseCDF(final Double p) { Validate.notNull(p); Validate.isTrue(p >= 0 && p <= 1, "Probability must lie between 0 and 1 (inclusive)"); return _mu - _b * Math.signum(p - 0.5) * Math.log(1 - 2 * Math.abs(p - 0.5)); } /** * {@inheritDoc} */ @Override public double getPDF(final Double x) { Validate.notNull(x); return Math.exp(-Math.abs(x - _mu) / _b) / (2 * _b); } /** * {@inheritDoc} */ @Override public double nextRandom() { final double u = _engine.nextDouble() - 0.5; return _mu - _b * Math.signum(u) * Math.log(1 - 2 * Math.abs(u)); } /** * @return The location parameter */ public double getMu() { return _mu; } /** * @return The scale parameter */ public double getB() { return _b; } @Override public int hashCode() { final int prime = 31; int result = 1; long temp; temp = Double.doubleToLongBits(_b); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(_mu); result = prime * result + (int) (temp ^ (temp >>> 32)); return result; } @Override public boolean equals(final Object obj) { if (this == obj) { return true; } if (obj == null) { return false; } if (getClass() != obj.getClass()) { return false; } final LaplaceDistribution other = (LaplaceDistribution) obj; if (Double.doubleToLongBits(_b) != Double.doubleToLongBits(other._b)) { return false; } return Double.doubleToLongBits(_mu) == Double.doubleToLongBits(other._mu); } }