Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.math.statistics.distribution; import java.util.Date; import org.apache.commons.lang.Validate; import cern.jet.random.ChiSquare; import cern.jet.random.engine.MersenneTwister64; import cern.jet.random.engine.RandomEngine; import com.opengamma.analytics.math.function.Function2D; import com.opengamma.analytics.math.function.special.InverseIncompleteGammaFunction; /** * A $\chi^2$ distribution with $k$ degrees of freedom is the distribution of * the sum of squares of $k$ independent standard normal random variables with * cdf and inverse cdf * $$ * \begin{align*} * F(x) &=\frac{\gamma\left(\frac{k}{2}, \frac{x}{2}\right)}{\Gamma\left(\frac{k}{2}\right)}\\ * F^{-1}(p) &= 2\gamma^{-1}\left(\frac{k}{2}, p\right) * \end{align*} * $$ * where $\gamma(y, z)$ is the lower incomplete Gamma function and $\Gamma(y)$ * is the Gamma function. The pdf is given by: * $$ * \begin{align*} * f(x)=\frac{x^{\frac{k}{2}-1}e^{-\frac{x}{2}}}{2^{\frac{k}{2}}\Gamma\left(\frac{k}{2}\right)} * \end{align*} * $$ * This implementation uses the CERN <a href="http://acs.lbl.gov/~hoschek/colt/api/index.html">colt</a> package for the * cdf, pdf and $\chi^2$-distributed random numbers. * */ public class ChiSquareDistribution implements ProbabilityDistribution<Double> { private final Function2D<Double, Double> _inverseFunction = new InverseIncompleteGammaFunction(); private final ChiSquare _chiSquare; private final double _degrees; /** * @param degrees The degrees of freedom of the distribution, not less than one */ public ChiSquareDistribution(final double degrees) { this(degrees, new MersenneTwister64(new Date())); } /** * @param degrees The degrees of freedom of the distribution, not less than one * @param engine A uniform random number generator, not null */ public ChiSquareDistribution(final double degrees, final RandomEngine engine) { Validate.isTrue(degrees >= 1, "Degrees of freedom must be greater than or equal to one"); Validate.notNull(engine); _chiSquare = new ChiSquare(degrees, engine); _degrees = degrees; } /** * {@inheritDoc} */ @Override public double getCDF(final Double x) { Validate.notNull(x); return _chiSquare.cdf(x); } /** * {@inheritDoc} */ @Override public double getPDF(final Double x) { Validate.notNull(x); return _chiSquare.pdf(x); } /** * {@inheritDoc} */ @Override public double getInverseCDF(final Double p) { Validate.notNull(p); Validate.isTrue(p >= 0 && p <= 1, "Probability must lie between 0 and 1"); return 2 * _inverseFunction.evaluate(0.5 * _degrees, p); } /** * {@inheritDoc} */ @Override public double nextRandom() { return _chiSquare.nextDouble(); } /** * @return The number of degrees of freedom */ public double getDegreesOfFreedom() { return _degrees; } @Override public int hashCode() { final int prime = 31; int result = 1; long temp; temp = Double.doubleToLongBits(_degrees); result = prime * result + (int) (temp ^ (temp >>> 32)); return result; } @Override public boolean equals(final Object obj) { if (this == obj) { return true; } if (obj == null) { return false; } if (getClass() != obj.getClass()) { return false; } final ChiSquareDistribution other = (ChiSquareDistribution) obj; return Double.doubleToLongBits(_degrees) == Double.doubleToLongBits(other._degrees); } }