Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.math.statistics.descriptive; import org.apache.commons.lang.Validate; import com.opengamma.analytics.math.function.Function1D; /** * Calculates the $n^th$ normalized central moment of a series of data. Given * the $n^th$ central moment $\mu_n$ of a series of data with standard * deviation $\sigma$, the normalized central moment is given by: * $$ * \begin{align*} * \mu_n' = \frac{\mu_n}{\sigma^n} * \end{align*} * $$ * The normalization gives a scale-invariant, dimensionless quantity. The * normalized central moment is also known as the _standardized moment_. */ public class SampleNormalizedCentralMomentCalculator extends Function1D<double[], Double> { private static final Function1D<double[], Double> STD_DEV = new SampleStandardDeviationCalculator(); private final int _n; private final Function1D<double[], Double> _moment; /** * @param n The degree of the moment of calculate, cannot be negative */ public SampleNormalizedCentralMomentCalculator(final int n) { Validate.isTrue(n >= 0, "n must be >= 0"); _n = n; _moment = new SampleCentralMomentCalculator(n); } /** * @param x The array of data, not null. Must contain at least two data points. * @return The normalized sample central moment. */ @Override public Double evaluate(final double[] x) { Validate.notNull(x); Validate.isTrue(x.length >= 2, "Need at least 2 data points to calculate normalized central moment"); if (_n == 0) { return 1.; } return _moment.evaluate(x) / Math.pow(STD_DEV.evaluate(x), _n); } }