Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.math.statistics.descriptive; import org.apache.commons.lang.Validate; import com.opengamma.analytics.math.function.Function1D; /** * Calculates the $n^th$ sample central moment of a series of data. * <p> * The sample central moment $\mu_n$ of a series of data $x_1, x_2, \dots, x_s$ is given by: * $$ * \begin{align*} * \mu_n = \frac{1}{s}\sum_{i=1}^s (x_i - \overline{x})^n * \end{align*} * $$ * where $\overline{x}$ is the mean. */ public class SampleCentralMomentCalculator extends Function1D<double[], Double> { private static final Function1D<double[], Double> MEAN = new MeanCalculator(); private final int _n; /** * @param n The degree of the moment to calculate, cannot be negative */ public SampleCentralMomentCalculator(final int n) { Validate.isTrue(n >= 0, "n must be >= 0"); _n = n; } /** * @param x The array of data, not null. Must contain at least two data points. * @return The sample central moment. */ @Override public Double evaluate(final double[] x) { Validate.notNull(x, "x"); Validate.isTrue(x.length >= 2, "Need at least 2 data points to calculate central moment"); if (_n == 0) { return 1.; } final double mu = MEAN.evaluate(x); double sum = 0; for (final Double d : x) { sum += Math.pow(d - mu, _n); } return sum / (x.length - 1); } }