Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.math.statistics.descriptive; import java.util.Arrays; import org.apache.commons.lang.Validate; import com.opengamma.analytics.math.function.Function1D; /** * Calculates the quartile skewness coefficient, which is given by: * $$ * \begin{align*} * \text{QS} = \frac{Q_1 - 2Q_2 + Q_3}{Q_3 - Q_1} * \end{align*} * $$ * where $Q_1$, $Q_2$ and $Q_3$ are the first, second and third quartiles. * <p> * The quartile skewness coefficient is also known as the Bowley skewness. */ public class QuartileSkewnessCalculator extends Function1D<double[], Double> { private static final Function1D<double[], Double> MEDIAN = new MedianCalculator(); /** * @param x The array of data, not null. Must contain at least three points. * @return The quartile skewness. */ @Override public Double evaluate(final double[] x) { Validate.notNull(x, "x"); final int n = x.length; Validate.isTrue(n >= 3, "Need at least three points to calculate interquartile range"); if (n == 3) { return (x[2] - 2 * x[1] + x[0]) / 2.; } final double[] copy = Arrays.copyOf(x, n); Arrays.sort(copy); double[] lower, upper; if (n % 2 == 0) { lower = Arrays.copyOfRange(copy, 0, n / 2); upper = Arrays.copyOfRange(copy, n / 2, n); } else { lower = Arrays.copyOfRange(copy, 0, n / 2 + 1); upper = Arrays.copyOfRange(copy, n / 2, n); } final double q1 = MEDIAN.evaluate(lower); final double q2 = MEDIAN.evaluate(x); final double q3 = MEDIAN.evaluate(upper); return (q1 - 2 * q2 + q3) / (q3 - q1); } }